hoooooosety commited on
Commit
cdad258
·
1 Parent(s): ef15142

Upload PPO LunarLander-v2 trained agent(1500000)

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 256.63 +/- 17.38
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 266.27 +/- 16.76
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3c3afa170>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3c3afa200>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3c3afa290>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3c3afa320>", "_build": "<function ActorCriticPolicy._build at 0x7ff3c3afa3b0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3c3afa440>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3c3afa4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3c3afa560>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3c3afa5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3c3afa680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3c3afa710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3c3afa7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff3c4b13700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692347248180078607, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABA2DrDkT26+aGduvPUALaI4r46DLezOQAAgD8AAIA/M0XmPUg70T2BOAm+B7snvkdpUL2jBNm8AAAAAAAAAADN3Sa9FECsui/eJTK/b+sw7nIiugD+qLIAAIA/AACAPxotBT7K180+acU6vtAqi76csBg9PsypPAAAAAAAAAAAc1TxvTolgz65VzQ+O7Bavg/OxT0uQ4c8AAAAAAAAAADNokG9wyGaPxR4Mb7rRde+Pgw2vaSIMr0AAAAAAAAAAAPTqr5BozA/6RCQvQ8x977hMc69OJwoPgAAAAAAAAAAGuWHvcRmxz14j3i9kxQWvpLn1bz25zq9AAAAAAAAAABTxSK+H8riPCKDMD7hWCm+VTWRO1NDez0AAAAAAAAAAM107zwbRY4/YdktPYD53L5Xd4095VipvAAAAAAAAAAAc/qbvexBkLkaDyy2ifrcsJ7H8LsCD1g1AAAAAAAAgD8TOjY+6fE/P0IahL3hMbG+g34BPrMT5bwAAAAAAAAAAE2zkL3WsaQ/VhPyvlSV174EtrC9QhpavgAAAAAAAAAAKq3FPuLfYD+W1k68EPuOvvcXcz4+sym+AAAAAAAAAAAzk+S9liwGP0xktD3h0nq+XcyXO8J/nb0AAAAAAAAAAN7chr58ssE++MKuPWv2hL4BkQW9II/uvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMkjHKfWc2MAWyUTR4BjAF0lEdAlAgQJkXk53V9lChoBkdAcJO9CeEqUmgHTQsBaAhHQJQIsG1QZXN1fZQoaAZHQHAtBNdqtYBoB00HAWgIR0CUCT2i+L3sdX2UKGgGR0By3Jg7YChfaAdNmAFoCEdAlAmZvYODrnV9lChoBkdAb/652hZha2gHTT8BaAhHQJQKuqNp/PR1fZQoaAZHQG3tGgBcRlJoB03mAmgIR0CUCx/k/8l5dX2UKGgGR0Bw7agRK6FuaAdNGAFoCEdAlAs3JT2nKnV9lChoBkdAcQ72KVII4WgHTTsBaAhHQJQLNm29cr11fZQoaAZHQHFjxoZhrnFoB01wAWgIR0CUDLwG4ZuRdX2UKGgGR0ByatqcmShbaAdNLgFoCEdAlA07tiQT23V9lChoBkdAcaE9Ujs2N2gHTSEBaAhHQJQOwMqjJuF1fZQoaAZHQHDseL3sXzloB00qAWgIR0CUEV6STyJ9dX2UKGgGR0Byzk2aUiY+aAdNYwFoCEdAlBHSS3b213V9lChoBkdAburdB0IToWgHTR8BaAhHQJQTJI3BHkN1fZQoaAZHQEdaRtgrpaBoB0veaAhHQJQTyzdDYyx1fZQoaAZHQHCbRFEy+HtoB00/AWgIR0CUE8iGFi8WdX2UKGgGR0Busx/5LytnaAdNBQFoCEdAlBT12zOX3XV9lChoBkdAcQxpNbkfcWgHS/loCEdAlBUa+JxecHV9lChoBkdAb8M7jDKoymgHTToBaAhHQJQWWzru6Vd1fZQoaAZHQHDuDYmLLp1oB00HAWgIR0CUFqBj4HopdX2UKGgGR0BwZaO+7Dl6aAdNFgFoCEdAlBbYy44IbHV9lChoBkdAbsmnRb8m8mgHTQ8BaAhHQJQW67btZ3d1fZQoaAZHQG4MHkkrwvxoB00pAWgIR0CUF6pD/lySdX2UKGgGR0BxVaFqSHM2aAdNDAFoCEdAlBfXCGetjnV9lChoBkdAba5e4TbnHWgHTQ8BaAhHQJQYNky1uzh1fZQoaAZHQHF47Ub1h9doB00jAWgIR0CUGcn0Cih4dX2UKGgGR0ByjlL6DXe4aAdNKwFoCEdAlBvq9wm3OXV9lChoBkdAcBtXg9/z8WgHTRMBaAhHQJQcOXSjQAx1fZQoaAZHQG5Y5RbbDdhoB00zAWgIR0CUHIVlPJq7dX2UKGgGR0BxtfyGzru6aAdNEAFoCEdAlByQNoakynV9lChoBkdAbva0vXbudGgHTQ8BaAhHQJQdqZeAuqZ1fZQoaAZHQG9bw+t8uz1oB00bAWgIR0CUHfJsfq5cdX2UKGgGR0ByWWvnr6ciaAdNQQFoCEdAlB40p/gBLnV9lChoBkdAcPj163RXwWgHTS0BaAhHQJQgERYigTR1fZQoaAZHQHBxKCUX531oB00nAWgIR0CUIB1uzhP1dX2UKGgGR0BwStmVZ9uxaAdNQgFoCEdAlCFBk7Omi3V9lChoBkdAbRVliBoVVWgHTRoBaAhHQJQhkkmhM8J1fZQoaAZHQGzS5wXIlt1oB00yAWgIR0CUIbC2+fyxdX2UKGgGR0Bx6khcJMQFaAdNOgFoCEdAlCIbwe/5+HV9lChoBkdAcQJD1GsmwGgHTQIBaAhHQJQikhePaL51fZQoaAZHQFFiaGYa5wxoB0u4aAhHQJQivBTGYKJ1fZQoaAZHQFGTPHT7VKBoB0vaaAhHQJQjRTZQHiZ1fZQoaAZHQGGPMwtapxZoB03oA2gIR0CUI3IY3vQXdX2UKGgGR0BsTJmwqy4XaAdNFwFoCEdAlCVu+IuXeHV9lChoBkdAcGdWZ7Xxv2gHTR4BaAhHQJQmAfW+XZ51fZQoaAZHQHK9Qr+YMORoB00FAWgIR0CUJn6IWP92dX2UKGgGR0BwRaJDVpbmaAdNGAFoCEdAlDgpnUUfxXV9lChoBkdAcg5/EOy3TmgHTVIBaAhHQJQ5rsE7nxJ1fZQoaAZHQHBL2KQ7tAtoB00fAWgIR0CUOlpWFN+LdX2UKGgGR0Br8n9P1tfpaAdL9mgIR0CUOpNi6QNkdX2UKGgGR0BvNYqCpWFOaAdNKQFoCEdAlDqwAdXDFnV9lChoBkdAcUfDAaef7WgHTRABaAhHQJQ7Yj3VTaV1fZQoaAZHQHCFnBP9DQZoB0v+aAhHQJQ7YW3z+WJ1fZQoaAZHQHEUjyOJcgRoB00eAWgIR0CUO4jgAIY4dX2UKGgGR0BJi29cry2AaAdL9mgIR0CUPIMH8jzJdX2UKGgGR0BwR5BqsU7CaAdNMQFoCEdAlD70DdP+GXV9lChoBkdAa6K3S8an8GgHTXMBaAhHQJRBlQ66reZ1fZQoaAZHQG37tBWxQi1oB00LAWgIR0CUQllf7aZhdX2UKGgGR0ByfblfZ26kaAdNhwFoCEdAlEJag7HQyHV9lChoBkdAcZYa4MF2V2gHTSwBaAhHQJRDPGrCFbp1fZQoaAZHQG7unM2WIGhoB00rAWgIR0CURXqbBoEkdX2UKGgGR0BrYU23rleXaAdNcAFoCEdAlEYElme18nV9lChoBkdAbfoVeruIAWgHTRkBaAhHQJRGq6f8Mux1fZQoaAZHQHKu8yi22G9oB00CAWgIR0CUSAtI065odX2UKGgGR0Bs6wHqu8sdaAdNBwFoCEdAlEgVRYRuj3V9lChoBkdAbMerPt2LYWgHTR4BaAhHQJRIQWM0gr91fZQoaAZHQHEwCBXjlxRoB00OAWgIR0CUSG6xPfsNdX2UKGgGR0ByOAwoLG70aAdNMgFoCEdAlEj9To+wDHV9lChoBkdAcTJ9q1w5vWgHTU8BaAhHQJRJ8sK9f1J1fZQoaAZHQHAoMijcmBxoB004AWgIR0CUS9nOSntOdX2UKGgGR0Bw1vk0aZQYaAdNNgFoCEdAlE58VxjriXV9lChoBkdAYYraRp1zQ2gHTegDaAhHQJROhu/Dcdp1fZQoaAZHQG1Tvttygf5oB00RAWgIR0CUT7YeDFqBdX2UKGgGR0Byg58rqdH2aAdNLgFoCEdAlFBtrsSkCXV9lChoBkdAcSK6Ae7tiWgHTSwBaAhHQJRRCSeRPoF1fZQoaAZHQHCf1JUYKploB00gAWgIR0CUUU61stTUdX2UKGgGR0BvD68+RoysaAdNBQFoCEdAlFM2tZFG5XV9lChoBkdAbuUVWS2Yv2gHTSQBaAhHQJRUIVsUIs11fZQoaAZHQG+5fReC04RoB00BAWgIR0CUVZQSzw+ddX2UKGgGR0ByXgF3Y+SsaAdNFwFoCEdAlFWkJfICEHV9lChoBkdAcG7w4bS7XmgHTSgBaAhHQJRWguIyj591fZQoaAZHQG81B8QZn+RoB01wAWgIR0CUV38scyWSdX2UKGgGR0BwIH+DOC5FaAdNPgFoCEdAlFfHNxEORXV9lChoBkdAcuy6Vt4zJ2gHTUUBaAhHQJRX4YfnwG51fZQoaAZHQHGVQMtsen1oB00vAWgIR0CUWbEpiI+GdX2UKGgGR0BvAgUcn3L3aAdNEQFoCEdAlFphcu8K5XV9lChoBkdAcmxDcM3IdWgHTRMBaAhHQJRacJLM9r51fZQoaAZHQHEFnmzSkTJoB00oAWgIR0CUW9vcrRShdX2UKGgGR0BxVEPe54GEaAdNHwFoCEdAlFwNXDFZPnV9lChoBkdAcU9svIwM6WgHTRUBaAhHQJRcUbKifxt1fZQoaAZHQHJrDhUBGQVoB020AWgIR0CUXJUNKAavdX2UKGgGR0Bu5rcuanaWaAdNKgFoCEdAlFzMV58jRnV9lChoBkdAcGPnmq5sj2gHTTIBaAhHQJRedthuwX91fZQoaAZHQHDhHAh0QshoB0v5aAhHQJRepuMuOCJ1fZQoaAZHQHEJpRjz7MxoB00+AWgIR0CUX14N7SiNdX2UKGgGR0Bu9dIuoP07aAdNCAFoCEdAlF++Mhouf3V9lChoBkdAbSg3VCojwGgHTTUBaAhHQJRf8uqWC3B1fZQoaAZHQGzTOkUKzAxoB00aAWgIR0CUYKpJPIn0dX2UKGgGR0Bxn0GRmseXaAdNYQFoCEdAlGFYd2gWanV9lChoBkdAcsERHww0wmgHTT0BaAhHQJRhqmYSg5B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcebdb01870>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcebdb01900>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcebdb01990>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcebdb01a20>", "_build": "<function ActorCriticPolicy._build at 0x7fcebdb01ab0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcebdb01b40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcebdb01bd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcebdb01c60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcebdb01cf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcebdb01d80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcebdb01e10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcebdb01ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcebdaf2c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692411206074673011, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2OZL2ciaI+zgY8PU6xor5x99c8Oo4lvQAAAAAAAAAAZg/hPEtn8j5VCAu+G0aYvss/zbxeCcm9AAAAAAAAAAAzXqS9drXXPuBbmD5MwKW+HhALPsuZrD0AAAAAAAAAADOE970qoO0+AHZePouPsr7Mh8+8fUTsPQAAAAAAAAAAmqmoOpQIVz4Wk4M9O9iEvoX2fD373wa8AAAAAAAAAABmT4c8rp2FugUqtDbxyYkxjEj/OYq107UAAIA/AACAP42DyD3Eo7U/JlTxPvEhY74+pvo99EWOPgAAAAAAAAAAM58uvO1jWj9JbAg95LrZvgB/XT21vdk7AAAAAAAAAABGTSS+3WWjP98PF7/7R96+uaeHvgKFpb4AAAAAAAAAADO2v7x8q7Q/FllHv3pIj7x57LI8oLPfPQAAAAAAAAAAWpwKvgOtAj9unRI+l+C1viIbPb35KQU9AAAAAAAAAACao2U8uLb7ucPfFLaJkdovYW5mu4xxPzUAAIA/AACAPzP3sbuFh6Y8rmFEPYUjkr6s+hI9rkDwPAAAAAAAAAAAs74oPeG03rqq1ZU6IrGWPJCI+bv9MoI9AACAPwAAgD8AkPE7Ul2lPoraJb1kfae+/h5Pvc77Y7wAAAAAAAAAAAD4ajvhoJ66CEaLObXMgjRCAZm6hZeguAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+WRK6FuemMAWyUS+6MAXSUR0CcveqzqrzYdX2UKGgGR0ByDnFo+OfeaAdL8WgIR0Ccvg5HVf/ndX2UKGgGR0Bvl8OZssQNaAdL/mgIR0CcvhymQ8wIdX2UKGgGR0BuezHZK3/haAdNDQFoCEdAnL5KhQFcIXV9lChoBkdAb1VXFLnLaGgHS+9oCEdAnL906YE4enV9lChoBkdAcVV0fHPu5WgHTQEBaAhHQJy/e8qWkad1fZQoaAZHQG7JZCOWBz5oB0v7aAhHQJy/penhsIp1fZQoaAZHQHICzgZTAFhoB0vhaAhHQJzAl0Lc9GJ1fZQoaAZHQG9gdvsJIDpoB00CAWgIR0CcwJdk8RthdX2UKGgGR0Bw4jIyTINmaAdNDwFoCEdAnMCbqptJnXV9lChoBkdAcaHSCe2/jGgHTSsBaAhHQJzBCoybhFV1fZQoaAZHQG/oaRp1zQxoB00AAWgIR0CcwXxNqQA/dX2UKGgGR0BzNEvexfOVaAdNAAFoCEdAnMGqqGUOeHV9lChoBkdAcs0F72L5ymgHS/doCEdAnMGwRf4REnV9lChoBkdAcieRArxy4mgHS+RoCEdAnMHLcO9WZXV9lChoBkdAcbtwrUb1iGgHS/JoCEdAnMICOBDohnV9lChoBkdAct3hbW3BpGgHS+hoCEdAnMKbJ8v25HV9lChoBkdAcMwhgE2YOWgHS+1oCEdAnMLQ5myxA3V9lChoBkdAb5TadMCcPWgHTQYBaAhHQJzDWNFSbYt1fZQoaAZHQG+VkJBw++xoB00JAWgIR0Ccw5f8MuvmdX2UKGgGR0Bw9xiSaEzwaAdL5mgIR0CcxCwuuievdX2UKGgGR0BwMDYukDZEaAdL/GgIR0CcxHAvL5h0dX2UKGgGR0BwV2PvKEFoaAdNDAFoCEdAnMTDNY8uBnV9lChoBkdAcUtXEIgNgGgHS9poCEdAnMTTrRjSX3V9lChoBkdAczRXEIgNgGgHTQkBaAhHQJzF1LkCFK11fZQoaAZHQHD1ixFAmiRoB0v3aAhHQJzF4qNIbwV1fZQoaAZHQHE4Ai/wiJRoB00ZAWgIR0CcxjlolD4QdX2UKGgGR0BwqKrIYFaCaAdL6GgIR0Ccxm/Y8Md+dX2UKGgGR0BwJ0RdyDIzaAdL8mgIR0CcxoHzpX6qdX2UKGgGR0Bwjd4wAU+LaAdL/mgIR0CcxpPNVzZIdX2UKGgGR0By1rNC7btaaAdNAAFoCEdAnMbEOuq3mXV9lChoBkdAb4yw7DEWI2gHS/toCEdAnMcD6ab4J3V9lChoBkdAbXCnNxEORWgHS+ZoCEdAnMgfjjrAxnV9lChoBkdAcUUwzLwF1WgHTREBaAhHQJzIdHYpUgl1fZQoaAZHQHFqcchkiEBoB00fAWgIR0CcyIBqbjLkdX2UKGgGR0BuyjO/tY0VaAdL82gIR0CcyKZrYXfqdX2UKGgGR0Bwh4oDxLCfaAdL82gIR0Cc2U8QqZtvdX2UKGgGR0ByJD/1g6U8aAdL+GgIR0Cc2acMEzO5dX2UKGgGR0BvPJkkKNQ1aAdNFgFoCEdAnNmvJq7AcnV9lChoBkdAcj5MbWEsa2gHS/xoCEdAnNnNGNJe3XV9lChoBkdAcAoldTo+wGgHS/RoCEdAnNsWwFC9iHV9lChoBkdAcaPw0O3DvWgHS/JoCEdAnNsuTFERa3V9lChoBkdAcN0GhVU+92gHTQgBaAhHQJzbltdiUgV1fZQoaAZHQHJgGbTc6/9oB00nAWgIR0Cc26LcsUZfdX2UKGgGR0BzBF9Brvb5aAdNIAFoCEdAnNvOhCdBjXV9lChoBkdAc1OgTh5xBGgHTS4BaAhHQJzb0iosI3R1fZQoaAZHQG6anRCx/utoB00NAWgIR0Cc2/ZQYUFjdX2UKGgGR0BwgLOC5EtvaAdL62gIR0Cc3IIeo1k2dX2UKGgGR0BxIoFFDv3KaAdNJAFoCEdAnNyXocJdB3V9lChoBkdAcSD0btJFs2gHS+ZoCEdAnNy4OH31z3V9lChoBkdAcYm+GXXyy2gHS/9oCEdAnN1U9U0el3V9lChoBkdAc5rlnRLK3mgHTRwBaAhHQJzds2bXpW51fZQoaAZHQG3E5MURFqloB0vvaAhHQJzedLGrCFd1fZQoaAZHQHDjqkyk9EFoB00RAWgIR0Cc3pwFkhA4dX2UKGgGR0BwlIvXbuc+aAdNAgFoCEdAnN65BcAzYXV9lChoBkdAczeDYRNAT2gHTQ0BaAhHQJze7wlSjxl1fZQoaAZHQG1iM+NcW0toB0vsaAhHQJzfuB06o2p1fZQoaAZHQHH5wG4ZuQ9oB00HAWgIR0Cc4GJ1q33IdX2UKGgGR0BxI7lEJBw/aAdL92gIR0Cc4H0nPVurdX2UKGgGR0Bvrqt3fQ8faAdL+2gIR0Cc4Ikl/pdKdX2UKGgGR0ByLDo8p1A8aAdL8WgIR0Cc4JKlHjIadX2UKGgGR0Bvo2G/N7jUaAdL+WgIR0Cc4LfCQ9zPdX2UKGgGR0BxkjbO/tY0aAdNAgFoCEdAnOEEpNKywHV9lChoBkdAck3bm2b5M2gHS+NoCEdAnOFEIPbwjXV9lChoBkdAcm1+uvECNmgHS/loCEdAnOF0yxiXpnV9lChoBkdAcdY+VTrE+GgHS/RoCEdAnOF1NtZV43V9lChoBkdAcySHwPRRdmgHTQMBaAhHQJzibjhky1x1fZQoaAZHQHA3ouXeFcpoB0v3aAhHQJzikD0UXYV1fZQoaAZHQHAd/bsWweNoB0v2aAhHQJzjcUL2HtZ1fZQoaAZHQG+NRGc4HX5oB0vtaAhHQJzjk74i5d51fZQoaAZHQHE/64tpVS5oB00AAWgIR0Cc479gnc+JdX2UKGgGR0BwoNsoDxLCaAdNDQFoCEdAnOO/ldTo+3V9lChoBkdAcEOHYpUgjmgHS/RoCEdAnORud5IH1XV9lChoBkdAcPqT4tYjjmgHS+1oCEdAnOUiElE7XHV9lChoBkdAcAFld1MdtGgHS/poCEdAnOVLE9+w1XV9lChoBkdAcIGOuq3mWGgHS/NoCEdAnOV/+OwPiHV9lChoBkdAbj7mseXAumgHS/xoCEdAnOWJ08vEj3V9lChoBkdAcFBH7gsK9mgHTQYBaAhHQJzlrtw71Zl1fZQoaAZHQG+6V/lQuVZoB00EAWgIR0Cc5itNi6QOdX2UKGgGR0BxIfeVLSNPaAdL9GgIR0Cc5lczZYgadX2UKGgGR0ByGDj2i+L4aAdNEAFoCEdAnOa3cDbJwXV9lChoBkdAcSBlolD4QGgHTRkBaAhHQJznHALy+Yd1fZQoaAZHQG61ct5D7ZZoB00MAWgIR0Cc6BX05EMLdX2UKGgGR0ByXyNIbwSbaAdNBwFoCEdAnOghQSBbwHV9lChoBkdAcYOTho/RmmgHS+poCEdAnOhuz6ab4XV9lChoBkdAc6KU+LWI42gHS+ZoCEdAnOiwAlv603V9lChoBkdAb0mOy3Td+GgHS/toCEdAnOj39aUzK3V9lChoBkdAb+MPbO/tY2gHS/VoCEdAnOkItUXHinV9lChoBkdAcZOyULUkOmgHTQQBaAhHQJzqNpYcNpd1fZQoaAZHQHB4d7BwdbRoB0voaAhHQJzqSyX2M851fZQoaAZHQHNy0rf+CK9oB0vaaAhHQJzqT6WPcSJ1fZQoaAZHQHIeAqZtvXNoB00DAWgIR0Cc6vro4dZJdX2UKGgGR0BzqelvZRKpaAdNAAFoCEdAnOsmlZX+2nV9lChoBkdAcrBEeyRjjWgHS/1oCEdAnOs5xzaK13V9lChoBkdAbhQvmozeoGgHS+5oCEdAnOt2uTzNEHV9lChoBkdActZa/h2nsWgHS+toCEdAnOuVzU7SzHV9lChoBkdAbgAkgOjIrGgHS/toCEdAnOxJuVHFxXV9lChoBkdAcVa5ylvZRWgHTRsBaAhHQJztbDsMRYl1fZQoaAZHQG9ulmOEM9doB0v3aAhHQJztjtqpLmJ1fZQoaAZHQHDQPw/gR9RoB00FAWgIR0Cc7fNcGC7LdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:acd9b4015a642de4af3df771dfd7d318e1e8efb9f9ce53ae8f5afed2079c3233
3
- size 146746
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1096c4252152646d9513d0383a2da3a527e5fd5accf83c4d0ac43adfc7f0249d
3
+ size 146702
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3c3afa170>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3c3afa200>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3c3afa290>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3c3afa320>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ff3c3afa3b0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ff3c3afa440>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff3c3afa4d0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3c3afa560>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7ff3c3afa5f0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3c3afa680>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3c3afa710>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3c3afa7a0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7ff3c4b13700>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1015808,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1692347248180078607,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABA2DrDkT26+aGduvPUALaI4r46DLezOQAAgD8AAIA/M0XmPUg70T2BOAm+B7snvkdpUL2jBNm8AAAAAAAAAADN3Sa9FECsui/eJTK/b+sw7nIiugD+qLIAAIA/AACAPxotBT7K180+acU6vtAqi76csBg9PsypPAAAAAAAAAAAc1TxvTolgz65VzQ+O7Bavg/OxT0uQ4c8AAAAAAAAAADNokG9wyGaPxR4Mb7rRde+Pgw2vaSIMr0AAAAAAAAAAAPTqr5BozA/6RCQvQ8x977hMc69OJwoPgAAAAAAAAAAGuWHvcRmxz14j3i9kxQWvpLn1bz25zq9AAAAAAAAAABTxSK+H8riPCKDMD7hWCm+VTWRO1NDez0AAAAAAAAAAM107zwbRY4/YdktPYD53L5Xd4095VipvAAAAAAAAAAAc/qbvexBkLkaDyy2ifrcsJ7H8LsCD1g1AAAAAAAAgD8TOjY+6fE/P0IahL3hMbG+g34BPrMT5bwAAAAAAAAAAE2zkL3WsaQ/VhPyvlSV174EtrC9QhpavgAAAAAAAAAAKq3FPuLfYD+W1k68EPuOvvcXcz4+sym+AAAAAAAAAAAzk+S9liwGP0xktD3h0nq+XcyXO8J/nb0AAAAAAAAAAN7chr58ssE++MKuPWv2hL4BkQW9II/uvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVPAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHMkjHKfWc2MAWyUTR4BjAF0lEdAlAgQJkXk53V9lChoBkdAcJO9CeEqUmgHTQsBaAhHQJQIsG1QZXN1fZQoaAZHQHAtBNdqtYBoB00HAWgIR0CUCT2i+L3sdX2UKGgGR0By3Jg7YChfaAdNmAFoCEdAlAmZvYODrnV9lChoBkdAb/652hZha2gHTT8BaAhHQJQKuqNp/PR1fZQoaAZHQG3tGgBcRlJoB03mAmgIR0CUCx/k/8l5dX2UKGgGR0Bw7agRK6FuaAdNGAFoCEdAlAs3JT2nKnV9lChoBkdAcQ72KVII4WgHTTsBaAhHQJQLNm29cr11fZQoaAZHQHFjxoZhrnFoB01wAWgIR0CUDLwG4ZuRdX2UKGgGR0ByatqcmShbaAdNLgFoCEdAlA07tiQT23V9lChoBkdAcaE9Ujs2N2gHTSEBaAhHQJQOwMqjJuF1fZQoaAZHQHDseL3sXzloB00qAWgIR0CUEV6STyJ9dX2UKGgGR0Byzk2aUiY+aAdNYwFoCEdAlBHSS3b213V9lChoBkdAburdB0IToWgHTR8BaAhHQJQTJI3BHkN1fZQoaAZHQEdaRtgrpaBoB0veaAhHQJQTyzdDYyx1fZQoaAZHQHCbRFEy+HtoB00/AWgIR0CUE8iGFi8WdX2UKGgGR0Busx/5LytnaAdNBQFoCEdAlBT12zOX3XV9lChoBkdAcQxpNbkfcWgHS/loCEdAlBUa+JxecHV9lChoBkdAb8M7jDKoymgHTToBaAhHQJQWWzru6Vd1fZQoaAZHQHDuDYmLLp1oB00HAWgIR0CUFqBj4HopdX2UKGgGR0BwZaO+7Dl6aAdNFgFoCEdAlBbYy44IbHV9lChoBkdAbsmnRb8m8mgHTQ8BaAhHQJQW67btZ3d1fZQoaAZHQG4MHkkrwvxoB00pAWgIR0CUF6pD/lySdX2UKGgGR0BxVaFqSHM2aAdNDAFoCEdAlBfXCGetjnV9lChoBkdAba5e4TbnHWgHTQ8BaAhHQJQYNky1uzh1fZQoaAZHQHF47Ub1h9doB00jAWgIR0CUGcn0Cih4dX2UKGgGR0ByjlL6DXe4aAdNKwFoCEdAlBvq9wm3OXV9lChoBkdAcBtXg9/z8WgHTRMBaAhHQJQcOXSjQAx1fZQoaAZHQG5Y5RbbDdhoB00zAWgIR0CUHIVlPJq7dX2UKGgGR0BxtfyGzru6aAdNEAFoCEdAlByQNoakynV9lChoBkdAbva0vXbudGgHTQ8BaAhHQJQdqZeAuqZ1fZQoaAZHQG9bw+t8uz1oB00bAWgIR0CUHfJsfq5cdX2UKGgGR0ByWWvnr6ciaAdNQQFoCEdAlB40p/gBLnV9lChoBkdAcPj163RXwWgHTS0BaAhHQJQgERYigTR1fZQoaAZHQHBxKCUX531oB00nAWgIR0CUIB1uzhP1dX2UKGgGR0BwStmVZ9uxaAdNQgFoCEdAlCFBk7Omi3V9lChoBkdAbRVliBoVVWgHTRoBaAhHQJQhkkmhM8J1fZQoaAZHQGzS5wXIlt1oB00yAWgIR0CUIbC2+fyxdX2UKGgGR0Bx6khcJMQFaAdNOgFoCEdAlCIbwe/5+HV9lChoBkdAcQJD1GsmwGgHTQIBaAhHQJQikhePaL51fZQoaAZHQFFiaGYa5wxoB0u4aAhHQJQivBTGYKJ1fZQoaAZHQFGTPHT7VKBoB0vaaAhHQJQjRTZQHiZ1fZQoaAZHQGGPMwtapxZoB03oA2gIR0CUI3IY3vQXdX2UKGgGR0BsTJmwqy4XaAdNFwFoCEdAlCVu+IuXeHV9lChoBkdAcGdWZ7Xxv2gHTR4BaAhHQJQmAfW+XZ51fZQoaAZHQHK9Qr+YMORoB00FAWgIR0CUJn6IWP92dX2UKGgGR0BwRaJDVpbmaAdNGAFoCEdAlDgpnUUfxXV9lChoBkdAcg5/EOy3TmgHTVIBaAhHQJQ5rsE7nxJ1fZQoaAZHQHBL2KQ7tAtoB00fAWgIR0CUOlpWFN+LdX2UKGgGR0Br8n9P1tfpaAdL9mgIR0CUOpNi6QNkdX2UKGgGR0BvNYqCpWFOaAdNKQFoCEdAlDqwAdXDFnV9lChoBkdAcUfDAaef7WgHTRABaAhHQJQ7Yj3VTaV1fZQoaAZHQHCFnBP9DQZoB0v+aAhHQJQ7YW3z+WJ1fZQoaAZHQHEUjyOJcgRoB00eAWgIR0CUO4jgAIY4dX2UKGgGR0BJi29cry2AaAdL9mgIR0CUPIMH8jzJdX2UKGgGR0BwR5BqsU7CaAdNMQFoCEdAlD70DdP+GXV9lChoBkdAa6K3S8an8GgHTXMBaAhHQJRBlQ66reZ1fZQoaAZHQG37tBWxQi1oB00LAWgIR0CUQllf7aZhdX2UKGgGR0ByfblfZ26kaAdNhwFoCEdAlEJag7HQyHV9lChoBkdAcZYa4MF2V2gHTSwBaAhHQJRDPGrCFbp1fZQoaAZHQG7unM2WIGhoB00rAWgIR0CURXqbBoEkdX2UKGgGR0BrYU23rleXaAdNcAFoCEdAlEYElme18nV9lChoBkdAbfoVeruIAWgHTRkBaAhHQJRGq6f8Mux1fZQoaAZHQHKu8yi22G9oB00CAWgIR0CUSAtI065odX2UKGgGR0Bs6wHqu8sdaAdNBwFoCEdAlEgVRYRuj3V9lChoBkdAbMerPt2LYWgHTR4BaAhHQJRIQWM0gr91fZQoaAZHQHEwCBXjlxRoB00OAWgIR0CUSG6xPfsNdX2UKGgGR0ByOAwoLG70aAdNMgFoCEdAlEj9To+wDHV9lChoBkdAcTJ9q1w5vWgHTU8BaAhHQJRJ8sK9f1J1fZQoaAZHQHAoMijcmBxoB004AWgIR0CUS9nOSntOdX2UKGgGR0Bw1vk0aZQYaAdNNgFoCEdAlE58VxjriXV9lChoBkdAYYraRp1zQ2gHTegDaAhHQJROhu/Dcdp1fZQoaAZHQG1Tvttygf5oB00RAWgIR0CUT7YeDFqBdX2UKGgGR0Byg58rqdH2aAdNLgFoCEdAlFBtrsSkCXV9lChoBkdAcSK6Ae7tiWgHTSwBaAhHQJRRCSeRPoF1fZQoaAZHQHCf1JUYKploB00gAWgIR0CUUU61stTUdX2UKGgGR0BvD68+RoysaAdNBQFoCEdAlFM2tZFG5XV9lChoBkdAbuUVWS2Yv2gHTSQBaAhHQJRUIVsUIs11fZQoaAZHQG+5fReC04RoB00BAWgIR0CUVZQSzw+ddX2UKGgGR0ByXgF3Y+SsaAdNFwFoCEdAlFWkJfICEHV9lChoBkdAcG7w4bS7XmgHTSgBaAhHQJRWguIyj591fZQoaAZHQG81B8QZn+RoB01wAWgIR0CUV38scyWSdX2UKGgGR0BwIH+DOC5FaAdNPgFoCEdAlFfHNxEORXV9lChoBkdAcuy6Vt4zJ2gHTUUBaAhHQJRX4YfnwG51fZQoaAZHQHGVQMtsen1oB00vAWgIR0CUWbEpiI+GdX2UKGgGR0BvAgUcn3L3aAdNEQFoCEdAlFphcu8K5XV9lChoBkdAcmxDcM3IdWgHTRMBaAhHQJRacJLM9r51fZQoaAZHQHEFnmzSkTJoB00oAWgIR0CUW9vcrRShdX2UKGgGR0BxVEPe54GEaAdNHwFoCEdAlFwNXDFZPnV9lChoBkdAcU9svIwM6WgHTRUBaAhHQJRcUbKifxt1fZQoaAZHQHJrDhUBGQVoB020AWgIR0CUXJUNKAavdX2UKGgGR0Bu5rcuanaWaAdNKgFoCEdAlFzMV58jRnV9lChoBkdAcGPnmq5sj2gHTTIBaAhHQJRedthuwX91fZQoaAZHQHDhHAh0QshoB0v5aAhHQJRepuMuOCJ1fZQoaAZHQHEJpRjz7MxoB00+AWgIR0CUX14N7SiNdX2UKGgGR0Bu9dIuoP07aAdNCAFoCEdAlF++Mhouf3V9lChoBkdAbSg3VCojwGgHTTUBaAhHQJRf8uqWC3B1fZQoaAZHQGzTOkUKzAxoB00aAWgIR0CUYKpJPIn0dX2UKGgGR0Bxn0GRmseXaAdNYQFoCEdAlGFYd2gWanV9lChoBkdAcsERHww0wmgHTT0BaAhHQJRhqmYSg5B1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcebdb01870>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcebdb01900>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcebdb01990>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcebdb01a20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcebdb01ab0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcebdb01b40>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcebdb01bd0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcebdb01c60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcebdb01cf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcebdb01d80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcebdb01e10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcebdb01ea0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fcebdaf2c00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1507328,
25
+ "_total_timesteps": 1500000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1692411206074673011,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2OZL2ciaI+zgY8PU6xor5x99c8Oo4lvQAAAAAAAAAAZg/hPEtn8j5VCAu+G0aYvss/zbxeCcm9AAAAAAAAAAAzXqS9drXXPuBbmD5MwKW+HhALPsuZrD0AAAAAAAAAADOE970qoO0+AHZePouPsr7Mh8+8fUTsPQAAAAAAAAAAmqmoOpQIVz4Wk4M9O9iEvoX2fD373wa8AAAAAAAAAABmT4c8rp2FugUqtDbxyYkxjEj/OYq107UAAIA/AACAP42DyD3Eo7U/JlTxPvEhY74+pvo99EWOPgAAAAAAAAAAM58uvO1jWj9JbAg95LrZvgB/XT21vdk7AAAAAAAAAABGTSS+3WWjP98PF7/7R96+uaeHvgKFpb4AAAAAAAAAADO2v7x8q7Q/FllHv3pIj7x57LI8oLPfPQAAAAAAAAAAWpwKvgOtAj9unRI+l+C1viIbPb35KQU9AAAAAAAAAACao2U8uLb7ucPfFLaJkdovYW5mu4xxPzUAAIA/AACAPzP3sbuFh6Y8rmFEPYUjkr6s+hI9rkDwPAAAAAAAAAAAs74oPeG03rqq1ZU6IrGWPJCI+bv9MoI9AACAPwAAgD8AkPE7Ul2lPoraJb1kfae+/h5Pvc77Y7wAAAAAAAAAAAD4ajvhoJ66CEaLObXMgjRCAZm6hZeguAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.004885333333333408,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+WRK6FuemMAWyUS+6MAXSUR0CcveqzqrzYdX2UKGgGR0ByDnFo+OfeaAdL8WgIR0Ccvg5HVf/ndX2UKGgGR0Bvl8OZssQNaAdL/mgIR0CcvhymQ8wIdX2UKGgGR0BuezHZK3/haAdNDQFoCEdAnL5KhQFcIXV9lChoBkdAb1VXFLnLaGgHS+9oCEdAnL906YE4enV9lChoBkdAcVV0fHPu5WgHTQEBaAhHQJy/e8qWkad1fZQoaAZHQG7JZCOWBz5oB0v7aAhHQJy/penhsIp1fZQoaAZHQHICzgZTAFhoB0vhaAhHQJzAl0Lc9GJ1fZQoaAZHQG9gdvsJIDpoB00CAWgIR0CcwJdk8RthdX2UKGgGR0Bw4jIyTINmaAdNDwFoCEdAnMCbqptJnXV9lChoBkdAcaHSCe2/jGgHTSsBaAhHQJzBCoybhFV1fZQoaAZHQG/oaRp1zQxoB00AAWgIR0CcwXxNqQA/dX2UKGgGR0BzNEvexfOVaAdNAAFoCEdAnMGqqGUOeHV9lChoBkdAcs0F72L5ymgHS/doCEdAnMGwRf4REnV9lChoBkdAcieRArxy4mgHS+RoCEdAnMHLcO9WZXV9lChoBkdAcbtwrUb1iGgHS/JoCEdAnMICOBDohnV9lChoBkdAct3hbW3BpGgHS+hoCEdAnMKbJ8v25HV9lChoBkdAcMwhgE2YOWgHS+1oCEdAnMLQ5myxA3V9lChoBkdAb5TadMCcPWgHTQYBaAhHQJzDWNFSbYt1fZQoaAZHQG+VkJBw++xoB00JAWgIR0Ccw5f8MuvmdX2UKGgGR0Bw9xiSaEzwaAdL5mgIR0CcxCwuuievdX2UKGgGR0BwMDYukDZEaAdL/GgIR0CcxHAvL5h0dX2UKGgGR0BwV2PvKEFoaAdNDAFoCEdAnMTDNY8uBnV9lChoBkdAcUtXEIgNgGgHS9poCEdAnMTTrRjSX3V9lChoBkdAczRXEIgNgGgHTQkBaAhHQJzF1LkCFK11fZQoaAZHQHD1ixFAmiRoB0v3aAhHQJzF4qNIbwV1fZQoaAZHQHE4Ai/wiJRoB00ZAWgIR0CcxjlolD4QdX2UKGgGR0BwqKrIYFaCaAdL6GgIR0Ccxm/Y8Md+dX2UKGgGR0BwJ0RdyDIzaAdL8mgIR0CcxoHzpX6qdX2UKGgGR0Bwjd4wAU+LaAdL/mgIR0CcxpPNVzZIdX2UKGgGR0By1rNC7btaaAdNAAFoCEdAnMbEOuq3mXV9lChoBkdAb4yw7DEWI2gHS/toCEdAnMcD6ab4J3V9lChoBkdAbXCnNxEORWgHS+ZoCEdAnMgfjjrAxnV9lChoBkdAcUUwzLwF1WgHTREBaAhHQJzIdHYpUgl1fZQoaAZHQHFqcchkiEBoB00fAWgIR0CcyIBqbjLkdX2UKGgGR0BuyjO/tY0VaAdL82gIR0CcyKZrYXfqdX2UKGgGR0Bwh4oDxLCfaAdL82gIR0Cc2U8QqZtvdX2UKGgGR0ByJD/1g6U8aAdL+GgIR0Cc2acMEzO5dX2UKGgGR0BvPJkkKNQ1aAdNFgFoCEdAnNmvJq7AcnV9lChoBkdAcj5MbWEsa2gHS/xoCEdAnNnNGNJe3XV9lChoBkdAcAoldTo+wGgHS/RoCEdAnNsWwFC9iHV9lChoBkdAcaPw0O3DvWgHS/JoCEdAnNsuTFERa3V9lChoBkdAcN0GhVU+92gHTQgBaAhHQJzbltdiUgV1fZQoaAZHQHJgGbTc6/9oB00nAWgIR0Cc26LcsUZfdX2UKGgGR0BzBF9Brvb5aAdNIAFoCEdAnNvOhCdBjXV9lChoBkdAc1OgTh5xBGgHTS4BaAhHQJzb0iosI3R1fZQoaAZHQG6anRCx/utoB00NAWgIR0Cc2/ZQYUFjdX2UKGgGR0BwgLOC5EtvaAdL62gIR0Cc3IIeo1k2dX2UKGgGR0BxIoFFDv3KaAdNJAFoCEdAnNyXocJdB3V9lChoBkdAcSD0btJFs2gHS+ZoCEdAnNy4OH31z3V9lChoBkdAcYm+GXXyy2gHS/9oCEdAnN1U9U0el3V9lChoBkdAc5rlnRLK3mgHTRwBaAhHQJzds2bXpW51fZQoaAZHQG3E5MURFqloB0vvaAhHQJzedLGrCFd1fZQoaAZHQHDjqkyk9EFoB00RAWgIR0Cc3pwFkhA4dX2UKGgGR0BwlIvXbuc+aAdNAgFoCEdAnN65BcAzYXV9lChoBkdAczeDYRNAT2gHTQ0BaAhHQJze7wlSjxl1fZQoaAZHQG1iM+NcW0toB0vsaAhHQJzfuB06o2p1fZQoaAZHQHH5wG4ZuQ9oB00HAWgIR0Cc4GJ1q33IdX2UKGgGR0BxI7lEJBw/aAdL92gIR0Cc4H0nPVurdX2UKGgGR0Bvrqt3fQ8faAdL+2gIR0Cc4Ikl/pdKdX2UKGgGR0ByLDo8p1A8aAdL8WgIR0Cc4JKlHjIadX2UKGgGR0Bvo2G/N7jUaAdL+WgIR0Cc4LfCQ9zPdX2UKGgGR0BxkjbO/tY0aAdNAgFoCEdAnOEEpNKywHV9lChoBkdAck3bm2b5M2gHS+NoCEdAnOFEIPbwjXV9lChoBkdAcm1+uvECNmgHS/loCEdAnOF0yxiXpnV9lChoBkdAcdY+VTrE+GgHS/RoCEdAnOF1NtZV43V9lChoBkdAcySHwPRRdmgHTQMBaAhHQJzibjhky1x1fZQoaAZHQHA3ouXeFcpoB0v3aAhHQJzikD0UXYV1fZQoaAZHQHAd/bsWweNoB0v2aAhHQJzjcUL2HtZ1fZQoaAZHQG+NRGc4HX5oB0vtaAhHQJzjk74i5d51fZQoaAZHQHE/64tpVS5oB00AAWgIR0Cc479gnc+JdX2UKGgGR0BwoNsoDxLCaAdNDQFoCEdAnOO/ldTo+3V9lChoBkdAcEOHYpUgjmgHS/RoCEdAnORud5IH1XV9lChoBkdAcPqT4tYjjmgHS+1oCEdAnOUiElE7XHV9lChoBkdAcAFld1MdtGgHS/poCEdAnOVLE9+w1XV9lChoBkdAcIGOuq3mWGgHS/NoCEdAnOV/+OwPiHV9lChoBkdAbj7mseXAumgHS/xoCEdAnOWJ08vEj3V9lChoBkdAcFBH7gsK9mgHTQYBaAhHQJzlrtw71Zl1fZQoaAZHQG+6V/lQuVZoB00EAWgIR0Cc5itNi6QOdX2UKGgGR0BxIfeVLSNPaAdL9GgIR0Cc5lczZYgadX2UKGgGR0ByGDj2i+L4aAdNEAFoCEdAnOa3cDbJwXV9lChoBkdAcSBlolD4QGgHTRkBaAhHQJznHALy+Yd1fZQoaAZHQG61ct5D7ZZoB00MAWgIR0Cc6BX05EMLdX2UKGgGR0ByXyNIbwSbaAdNBwFoCEdAnOghQSBbwHV9lChoBkdAcYOTho/RmmgHS+poCEdAnOhuz6ab4XV9lChoBkdAc6KU+LWI42gHS+ZoCEdAnOiwAlv603V9lChoBkdAb0mOy3Td+GgHS/toCEdAnOj39aUzK3V9lChoBkdAb+MPbO/tY2gHS/VoCEdAnOkItUXHinV9lChoBkdAcZOyULUkOmgHTQQBaAhHQJzqNpYcNpd1fZQoaAZHQHB4d7BwdbRoB0voaAhHQJzqSyX2M851fZQoaAZHQHNy0rf+CK9oB0vaaAhHQJzqT6WPcSJ1fZQoaAZHQHIeAqZtvXNoB00DAWgIR0Cc6vro4dZJdX2UKGgGR0BzqelvZRKpaAdNAAFoCEdAnOsmlZX+2nV9lChoBkdAcrBEeyRjjWgHS/1oCEdAnOs5xzaK13V9lChoBkdAbhQvmozeoGgHS+5oCEdAnOt2uTzNEHV9lChoBkdActZa/h2nsWgHS+toCEdAnOuVzU7SzHV9lChoBkdAbgAkgOjIrGgHS/toCEdAnOxJuVHFxXV9lChoBkdAcVa5ylvZRWgHTRsBaAhHQJztbDsMRYl1fZQoaAZHQG9ulmOEM9doB0v3aAhHQJztjtqpLmJ1fZQoaAZHQHDQPw/gR9RoB00FAWgIR0Cc7fNcGC7LdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 620,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:71696f300393e65e37cd16b610007f215316100d9038c5b7cafa95d0c8589c6d
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afd85630089539bd057466487d50ff2215e787a4ed46734425d2f78d9db66568
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07bd4b6c4c68299f56c34446198817e4c746f30e1adda8e39195c0a0bf7e4ed3
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1da87bb3505c0727dd42aab88ed3ff03703913993f8da02afa9f2cb40267d9ce
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
- - Numpy: 1.23.5
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
 
1
+ - OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
9
  - OpenAI Gym: 0.25.2
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 256.63291004222776, "std_reward": 17.38412160080042, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-18T08:53:38.631009"}
 
1
+ {"mean_reward": 266.2656935706485, "std_reward": 16.757110538301045, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-19T02:46:51.253801"}