File size: 4,880 Bytes
87ff5f8
 
e3fc0f2
 
 
07c0c02
 
 
190cc68
 
 
 
 
 
 
 
 
 
07c0c02
ef00e45
 
190cc68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef00e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
license: mit
language:
- zh
pipeline_tag: text-classification
---
# Bert Chinese Text Classification Model
this a Bert Model that train for customer service of logistics companies
### data(with noise since it from ASR text)
train: 10878 rows  
dev:2720 rows  
total: 13598 rows  
### param
embed_dim: 128  
batch size: 64  
contextsize: 20  
n_head: 2  
epoches: 100  

## Word Label(word, index, number of occurences)
```sh
我 1 18719  
个 2 12236  
快 3 8152  
一 4 8097  
递 5 7295  
那 6 7118  
了 7 6923  
的 8 6684  
是 9 6632  
到 10 6434  
你 11 5144  
没 12 4989  
有 13 4664  
下 14 4433  
这 15 4219  
在 16 4219  
么 17 4010  
查 18 3964  
就 19 3570  
好 20 3524  
```

## Tokenizer
```python
label_dict, label_n2w = read_labelFile(labelFile)
    word2ind, ind2word = get_worddict(wordLabelFile)
    stoplist = read_stopword(stopwordFile)
    cla_dict = {}

    # train data to vec
    traindataTxt = open(trainDataVecFile, 'w')
    datas = open(trainFile, 'r', encoding='utf_8').readlines()
    datas = list(filter(None, datas))
    random.shuffle(datas)
    for line in tqdm(datas, desc="traindata to vec"):
        line = line.replace('\n', '').split(':')
        # line = line.replace('\n','').split('\t')
        cla = line[1]
        # if cla in [21, 13, 9, 24, 23, 19, 14]:
        #     continue
        if cla in cla_dict:
            cla_dict[cla] += 1
        else:
            cla_dict[cla] = 1

        cla_ind = label_dict[cla]
        title_seg = ['我', '要', '下', '单']
        title_seg = [i for i in line[0]]
        # title_seg = jieba.cut(line[0], cut_all=False)
        title_ind = [cla_ind]
        for w in title_seg:
            if w in stoplist:
                continue
            title_ind.append(word2ind[w])
        length = len(title_ind)
        if length > maxLen + 1:
            title_ind = title_ind[0:21]
        if length < maxLen + 1:
            title_ind.extend([0] * (maxLen - length + 1))

        for n in title_ind:
            traindataTxt.write(str(n) + ',')
        traindataTxt.write('\n')
```

## Trainer
```python
print('init net...')
    model = my_model()
    model.to(device)
    print(model)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
    criterion = nn.CrossEntropyLoss()

    print("training...")

    best_dev_acc = 0
    # embed.train()
    for epoch in range(100):
        model.train()
        for i, (clas, sentences) in enumerate(train_dataLoader):
            # sentences: batch size 64 x sentence length 20 x embed dimension 128
            # 一个字是个128维vector 一句话是个 20x128的2D tensor 一个batch有64句话是个 64x20x128的3D tensor

            out = model(sentences.to(
                device))  # out: batch size 64 x word vector 4 (after my_linear)
            try:
                loss = criterion(out, clas.to(device))
            except:
                print(out.size(), out)
                print(clas.size(), clas)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            if (i + 1) % 10 == 0:
                print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item())
        model.eval()
        dev_acc = validation(model=model, val_dataLoader=val_dataLoader,
                             device=device)

        if best_dev_acc < dev_acc:
            best_dev_acc = dev_acc
            print("save model...")
            torch.save(model.state_dict(), "model.bin")
            print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item())
        print("best dev acc %.4f  dev acc %.4f" % (best_dev_acc, dev_acc))
```

## Testing
```python
def validation(model, val_dataLoader, device):
    model.eval()
    total = 0
    correct = 0
    with torch.no_grad():
        for i, (clas, sentences) in enumerate(val_dataLoader):
            try:
                # sentences = sentences.type(torch.LongTensor).to(device)
                # clas = clas.type(torch.LongTensor).to(device)
                out = model(
                    sentences.to(
                        device))  # out: batch size 64 x sentences length 20 x word dimension 4(after my_linear)
                # out = F.relu(out.squeeze(-3))
                # out = F.max_pool1d(out, out.size(2)).squeeze(2)
                # softmax = nn.Softmax(dim=1)

                pred = torch.argmax(out, dim=1)  # 64x4 -> 64x1

                correct += (pred == clas.to(device)).sum()
                total += clas.size()[0]
            except IndexError as e:
                print(i)
                print('clas', clas)
                print('clas size', clas.size())
                print('sentence', sentences)
                print('sentences size', sentences.size())
                print(e)
                print(e.__traceback__)
                exit()

    acc = correct / total
    return acc
```