Update README.md
Browse files
README.md
CHANGED
@@ -7,7 +7,8 @@ pipeline_tag: text-classification
|
|
7 |
# Bert Chinese Text Classification Model
|
8 |
this a Bert Model that train for customer service of logistics companies
|
9 |
|
10 |
-
## Word Label
|
|
|
11 |
我 1 18719
|
12 |
|
13 |
个 2 12236
|
@@ -46,4 +47,127 @@ this a Bert Model that train for customer service of logistics companies
|
|
46 |
|
47 |
就 19 3570
|
48 |
|
49 |
-
好 20 3524
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
# Bert Chinese Text Classification Model
|
8 |
this a Bert Model that train for customer service of logistics companies
|
9 |
|
10 |
+
## Word Label(word, index, number of occurences)
|
11 |
+
```sh
|
12 |
我 1 18719
|
13 |
|
14 |
个 2 12236
|
|
|
47 |
|
48 |
就 19 3570
|
49 |
|
50 |
+
好 20 3524
|
51 |
+
```
|
52 |
+
|
53 |
+
## Tokenizer
|
54 |
+
```python
|
55 |
+
label_dict, label_n2w = read_labelFile(labelFile)
|
56 |
+
word2ind, ind2word = get_worddict(wordLabelFile)
|
57 |
+
stoplist = read_stopword(stopwordFile)
|
58 |
+
cla_dict = {}
|
59 |
+
|
60 |
+
# train data to vec
|
61 |
+
traindataTxt = open(trainDataVecFile, 'w')
|
62 |
+
datas = open(trainFile, 'r', encoding='utf_8').readlines()
|
63 |
+
datas = list(filter(None, datas))
|
64 |
+
random.shuffle(datas)
|
65 |
+
for line in tqdm(datas, desc="traindata to vec"):
|
66 |
+
line = line.replace('\n', '').split(':')
|
67 |
+
# line = line.replace('\n','').split('\t')
|
68 |
+
cla = line[1]
|
69 |
+
# if cla in [21, 13, 9, 24, 23, 19, 14]:
|
70 |
+
# continue
|
71 |
+
if cla in cla_dict:
|
72 |
+
cla_dict[cla] += 1
|
73 |
+
else:
|
74 |
+
cla_dict[cla] = 1
|
75 |
+
|
76 |
+
cla_ind = label_dict[cla]
|
77 |
+
title_seg = ['我', '要', '下', '单']
|
78 |
+
title_seg = [i for i in line[0]]
|
79 |
+
# title_seg = jieba.cut(line[0], cut_all=False)
|
80 |
+
title_ind = [cla_ind]
|
81 |
+
for w in title_seg:
|
82 |
+
if w in stoplist:
|
83 |
+
continue
|
84 |
+
title_ind.append(word2ind[w])
|
85 |
+
length = len(title_ind)
|
86 |
+
if length > maxLen + 1:
|
87 |
+
title_ind = title_ind[0:21]
|
88 |
+
if length < maxLen + 1:
|
89 |
+
title_ind.extend([0] * (maxLen - length + 1))
|
90 |
+
|
91 |
+
for n in title_ind:
|
92 |
+
traindataTxt.write(str(n) + ',')
|
93 |
+
traindataTxt.write('\n')
|
94 |
+
```
|
95 |
+
|
96 |
+
## Trainer
|
97 |
+
```python
|
98 |
+
print('init net...')
|
99 |
+
model = my_model()
|
100 |
+
model.to(device)
|
101 |
+
print(model)
|
102 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.0005)
|
103 |
+
criterion = nn.CrossEntropyLoss()
|
104 |
+
|
105 |
+
print("training...")
|
106 |
+
|
107 |
+
best_dev_acc = 0
|
108 |
+
# embed.train()
|
109 |
+
for epoch in range(100):
|
110 |
+
model.train()
|
111 |
+
for i, (clas, sentences) in enumerate(train_dataLoader):
|
112 |
+
# sentences: batch size 64 x sentence length 20 x embed dimension 128
|
113 |
+
# 一个字是个128维vector 一句话是个 20x128的2D tensor 一个batch有64句话是个 64x20x128的3D tensor
|
114 |
+
|
115 |
+
out = model(sentences.to(
|
116 |
+
device)) # out: batch size 64 x word vector 4 (after my_linear)
|
117 |
+
try:
|
118 |
+
loss = criterion(out, clas.to(device))
|
119 |
+
except:
|
120 |
+
print(out.size(), out)
|
121 |
+
print(clas.size(), clas)
|
122 |
+
optimizer.zero_grad()
|
123 |
+
loss.backward()
|
124 |
+
optimizer.step()
|
125 |
+
if (i + 1) % 10 == 0:
|
126 |
+
print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item())
|
127 |
+
model.eval()
|
128 |
+
dev_acc = validation(model=model, val_dataLoader=val_dataLoader,
|
129 |
+
device=device)
|
130 |
+
|
131 |
+
if best_dev_acc < dev_acc:
|
132 |
+
best_dev_acc = dev_acc
|
133 |
+
print("save model...")
|
134 |
+
torch.save(model.state_dict(), "model.bin")
|
135 |
+
print("epoch:", epoch + 1, "step:", i + 1, "loss:", loss.item())
|
136 |
+
print("best dev acc %.4f dev acc %.4f" % (best_dev_acc, dev_acc))
|
137 |
+
```
|
138 |
+
|
139 |
+
## Testing
|
140 |
+
```python
|
141 |
+
def validation(model, val_dataLoader, device):
|
142 |
+
model.eval()
|
143 |
+
total = 0
|
144 |
+
correct = 0
|
145 |
+
with torch.no_grad():
|
146 |
+
for i, (clas, sentences) in enumerate(val_dataLoader):
|
147 |
+
try:
|
148 |
+
# sentences = sentences.type(torch.LongTensor).to(device)
|
149 |
+
# clas = clas.type(torch.LongTensor).to(device)
|
150 |
+
out = model(
|
151 |
+
sentences.to(
|
152 |
+
device)) # out: batch size 64 x sentences length 20 x word dimension 4(after my_linear)
|
153 |
+
# out = F.relu(out.squeeze(-3))
|
154 |
+
# out = F.max_pool1d(out, out.size(2)).squeeze(2)
|
155 |
+
# softmax = nn.Softmax(dim=1)
|
156 |
+
|
157 |
+
pred = torch.argmax(out, dim=1) # 64x4 -> 64x1
|
158 |
+
|
159 |
+
correct += (pred == clas.to(device)).sum()
|
160 |
+
total += clas.size()[0]
|
161 |
+
except IndexError as e:
|
162 |
+
print(i)
|
163 |
+
print('clas', clas)
|
164 |
+
print('clas size', clas.size())
|
165 |
+
print('sentence', sentences)
|
166 |
+
print('sentences size', sentences.size())
|
167 |
+
print(e)
|
168 |
+
print(e.__traceback__)
|
169 |
+
exit()
|
170 |
+
|
171 |
+
acc = correct / total
|
172 |
+
return acc
|
173 |
+
```
|