impaired-v3-independent-all-hc-train
This model is a fine-tuned version of honzapucalek/hc-czech-large-v3-v2-independent on the honzapucalek/impaired_v3_independent_all cs dataset. It achieves the following results on the evaluation set:
- Loss: 1.4176
- Wer: 0.4059
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.006 | 13.99 | 1000 | 1.1860 | 0.4332 |
0.0022 | 27.97 | 2000 | 1.1733 | 0.4211 |
0.0001 | 41.96 | 3000 | 1.3533 | 0.4109 |
0.0 | 55.94 | 4000 | 1.4029 | 0.4099 |
0.0 | 69.93 | 5000 | 1.4176 | 0.4059 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for honzapucalek/impaired-v3-independent-all-hc-train
Evaluation results
- Wer on honzapucalek/impaired_v3_independent_all cstest set self-reported0.406