Edit model card

results2

This model is a fine-tuned version of MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7766
  • Accuracy: 0.715
  • Precision: 0.7187
  • Recall: 0.7150
  • F1: 0.7138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6998 1.0 107 0.6713 0.6 0.6214 0.6000 0.5815
0.7015 2.0 214 0.6502 0.68 0.7143 0.6800 0.6667
0.6755 3.0 321 0.6740 0.53 0.6579 0.53 0.4107
0.6605 4.0 428 0.6061 0.64 0.6502 0.64 0.6338
0.5918 5.0 535 0.5675 0.695 0.7023 0.6950 0.6922
0.5717 6.0 642 0.5945 0.685 0.6953 0.685 0.6808
0.4655 7.0 749 0.5644 0.68 0.6801 0.6800 0.6800
0.3407 8.0 856 0.7529 0.7 0.7029 0.7 0.6989
0.3539 9.0 963 0.7211 0.69 0.6901 0.69 0.6900
0.2695 10.0 1070 0.7760 0.685 0.6905 0.685 0.6827
0.1666 11.0 1177 1.1053 0.71 0.7188 0.71 0.7071
0.1648 12.0 1284 1.1662 0.72 0.7258 0.72 0.7182
0.1229 13.0 1391 1.2760 0.735 0.7438 0.735 0.7326
0.0737 14.0 1498 1.5943 0.7 0.7029 0.7 0.6989
0.1196 15.0 1605 1.5407 0.705 0.7085 0.7050 0.7037
0.0389 16.0 1712 1.6411 0.69 0.7016 0.69 0.6855
0.0199 17.0 1819 1.7139 0.685 0.6919 0.685 0.6821
0.0453 18.0 1926 1.6549 0.71 0.7121 0.71 0.7093
0.0536 19.0 2033 1.7612 0.71 0.7142 0.71 0.7086
0.0035 20.0 2140 1.7766 0.715 0.7187 0.7150 0.7138

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
184M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hongpingjun98/results2

Finetuned
(7)
this model

Evaluation results