File size: 24,004 Bytes
404d985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
2023-10-17 10:52:13,216 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,217 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): ElectraModel(
(embeddings): ElectraEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): ElectraEncoder(
(layer): ModuleList(
(0-11): 12 x ElectraLayer(
(attention): ElectraAttention(
(self): ElectraSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): ElectraSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): ElectraIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): ElectraOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-17 10:52:13,217 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,217 MultiCorpus: 966 train + 219 dev + 204 test sentences
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Train: 966 sentences
2023-10-17 10:52:13,218 (train_with_dev=False, train_with_test=False)
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Training Params:
2023-10-17 10:52:13,218 - learning_rate: "3e-05"
2023-10-17 10:52:13,218 - mini_batch_size: "4"
2023-10-17 10:52:13,218 - max_epochs: "10"
2023-10-17 10:52:13,218 - shuffle: "True"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Plugins:
2023-10-17 10:52:13,218 - TensorboardLogger
2023-10-17 10:52:13,218 - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:52:13,218 - metric: "('micro avg', 'f1-score')"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Computation:
2023-10-17 10:52:13,218 - compute on device: cuda:0
2023-10-17 10:52:13,218 - embedding storage: none
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:52:14,319 epoch 1 - iter 24/242 - loss 4.05561927 - time (sec): 1.10 - samples/sec: 2190.88 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:52:15,412 epoch 1 - iter 48/242 - loss 3.46627133 - time (sec): 2.19 - samples/sec: 2166.57 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:52:16,512 epoch 1 - iter 72/242 - loss 2.62777849 - time (sec): 3.29 - samples/sec: 2147.87 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:52:17,621 epoch 1 - iter 96/242 - loss 2.06961410 - time (sec): 4.40 - samples/sec: 2218.01 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:52:18,710 epoch 1 - iter 120/242 - loss 1.78636708 - time (sec): 5.49 - samples/sec: 2194.06 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:52:19,830 epoch 1 - iter 144/242 - loss 1.54146613 - time (sec): 6.61 - samples/sec: 2211.98 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:52:20,933 epoch 1 - iter 168/242 - loss 1.34360051 - time (sec): 7.71 - samples/sec: 2243.84 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:22,058 epoch 1 - iter 192/242 - loss 1.19671631 - time (sec): 8.84 - samples/sec: 2276.02 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:23,141 epoch 1 - iter 216/242 - loss 1.11363742 - time (sec): 9.92 - samples/sec: 2253.01 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:24,233 epoch 1 - iter 240/242 - loss 1.03601016 - time (sec): 11.01 - samples/sec: 2234.83 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:52:24,322 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:24,323 EPOCH 1 done: loss 1.0336 - lr: 0.000030
2023-10-17 10:52:24,897 DEV : loss 0.2042546272277832 - f1-score (micro avg) 0.6459
2023-10-17 10:52:24,902 saving best model
2023-10-17 10:52:25,314 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:26,406 epoch 2 - iter 24/242 - loss 0.18992354 - time (sec): 1.09 - samples/sec: 2103.59 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:52:27,515 epoch 2 - iter 48/242 - loss 0.19235864 - time (sec): 2.20 - samples/sec: 2123.59 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:28,633 epoch 2 - iter 72/242 - loss 0.19211539 - time (sec): 3.32 - samples/sec: 2141.29 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:29,736 epoch 2 - iter 96/242 - loss 0.18398095 - time (sec): 4.42 - samples/sec: 2152.87 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:30,835 epoch 2 - iter 120/242 - loss 0.17679653 - time (sec): 5.52 - samples/sec: 2217.10 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:31,925 epoch 2 - iter 144/242 - loss 0.17400339 - time (sec): 6.61 - samples/sec: 2200.06 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:33,021 epoch 2 - iter 168/242 - loss 0.17306064 - time (sec): 7.71 - samples/sec: 2224.11 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:34,142 epoch 2 - iter 192/242 - loss 0.16742092 - time (sec): 8.83 - samples/sec: 2229.51 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:35,248 epoch 2 - iter 216/242 - loss 0.17430464 - time (sec): 9.93 - samples/sec: 2228.03 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:36,349 epoch 2 - iter 240/242 - loss 0.17096481 - time (sec): 11.03 - samples/sec: 2226.56 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:36,438 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:36,439 EPOCH 2 done: loss 0.1698 - lr: 0.000027
2023-10-17 10:52:37,325 DEV : loss 0.14782120287418365 - f1-score (micro avg) 0.8029
2023-10-17 10:52:37,330 saving best model
2023-10-17 10:52:37,889 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:39,021 epoch 3 - iter 24/242 - loss 0.12982655 - time (sec): 1.13 - samples/sec: 2135.48 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:40,123 epoch 3 - iter 48/242 - loss 0.10924199 - time (sec): 2.23 - samples/sec: 2224.54 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:41,234 epoch 3 - iter 72/242 - loss 0.09209921 - time (sec): 3.34 - samples/sec: 2302.15 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:42,342 epoch 3 - iter 96/242 - loss 0.09709447 - time (sec): 4.45 - samples/sec: 2276.86 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:43,444 epoch 3 - iter 120/242 - loss 0.10103426 - time (sec): 5.55 - samples/sec: 2260.26 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:44,535 epoch 3 - iter 144/242 - loss 0.10044124 - time (sec): 6.64 - samples/sec: 2260.54 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:45,641 epoch 3 - iter 168/242 - loss 0.10471543 - time (sec): 7.75 - samples/sec: 2271.00 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:46,742 epoch 3 - iter 192/242 - loss 0.10262288 - time (sec): 8.85 - samples/sec: 2211.03 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:47,881 epoch 3 - iter 216/242 - loss 0.10250671 - time (sec): 9.99 - samples/sec: 2233.48 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:48,964 epoch 3 - iter 240/242 - loss 0.10517789 - time (sec): 11.07 - samples/sec: 2216.96 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:49,053 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:49,053 EPOCH 3 done: loss 0.1058 - lr: 0.000023
2023-10-17 10:52:49,833 DEV : loss 0.16301028430461884 - f1-score (micro avg) 0.8143
2023-10-17 10:52:49,839 saving best model
2023-10-17 10:52:50,402 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:51,523 epoch 4 - iter 24/242 - loss 0.08820816 - time (sec): 1.12 - samples/sec: 1856.38 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:52,629 epoch 4 - iter 48/242 - loss 0.08121919 - time (sec): 2.22 - samples/sec: 2051.20 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:53,738 epoch 4 - iter 72/242 - loss 0.07061606 - time (sec): 3.33 - samples/sec: 2089.11 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:54,866 epoch 4 - iter 96/242 - loss 0.07100203 - time (sec): 4.46 - samples/sec: 2143.19 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:55,982 epoch 4 - iter 120/242 - loss 0.06984215 - time (sec): 5.58 - samples/sec: 2191.72 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:57,068 epoch 4 - iter 144/242 - loss 0.07062933 - time (sec): 6.66 - samples/sec: 2162.97 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:58,185 epoch 4 - iter 168/242 - loss 0.07553476 - time (sec): 7.78 - samples/sec: 2161.88 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:59,303 epoch 4 - iter 192/242 - loss 0.07153261 - time (sec): 8.90 - samples/sec: 2175.30 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:53:00,435 epoch 4 - iter 216/242 - loss 0.07264171 - time (sec): 10.03 - samples/sec: 2184.21 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:01,529 epoch 4 - iter 240/242 - loss 0.07099997 - time (sec): 11.12 - samples/sec: 2214.28 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:01,620 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:01,620 EPOCH 4 done: loss 0.0707 - lr: 0.000020
2023-10-17 10:53:02,370 DEV : loss 0.16144302487373352 - f1-score (micro avg) 0.8344
2023-10-17 10:53:02,375 saving best model
2023-10-17 10:53:02,879 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:04,051 epoch 5 - iter 24/242 - loss 0.03403467 - time (sec): 1.17 - samples/sec: 1861.56 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:05,152 epoch 5 - iter 48/242 - loss 0.04342883 - time (sec): 2.27 - samples/sec: 1958.76 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:06,263 epoch 5 - iter 72/242 - loss 0.04288749 - time (sec): 3.38 - samples/sec: 2083.67 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:07,380 epoch 5 - iter 96/242 - loss 0.04581926 - time (sec): 4.50 - samples/sec: 2084.16 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:08,465 epoch 5 - iter 120/242 - loss 0.04481656 - time (sec): 5.58 - samples/sec: 2109.10 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:09,619 epoch 5 - iter 144/242 - loss 0.04898354 - time (sec): 6.73 - samples/sec: 2164.60 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:10,700 epoch 5 - iter 168/242 - loss 0.05051468 - time (sec): 7.82 - samples/sec: 2156.24 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:11,843 epoch 5 - iter 192/242 - loss 0.05227590 - time (sec): 8.96 - samples/sec: 2158.97 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:12,960 epoch 5 - iter 216/242 - loss 0.05101012 - time (sec): 10.08 - samples/sec: 2170.68 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:14,094 epoch 5 - iter 240/242 - loss 0.05102788 - time (sec): 11.21 - samples/sec: 2199.28 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:14,185 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:14,185 EPOCH 5 done: loss 0.0509 - lr: 0.000017
2023-10-17 10:53:14,978 DEV : loss 0.19747966527938843 - f1-score (micro avg) 0.8398
2023-10-17 10:53:14,985 saving best model
2023-10-17 10:53:15,559 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:16,884 epoch 6 - iter 24/242 - loss 0.02212071 - time (sec): 1.32 - samples/sec: 1860.89 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:18,184 epoch 6 - iter 48/242 - loss 0.03533340 - time (sec): 2.62 - samples/sec: 1891.13 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:19,423 epoch 6 - iter 72/242 - loss 0.03639866 - time (sec): 3.86 - samples/sec: 1948.61 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:20,713 epoch 6 - iter 96/242 - loss 0.03590078 - time (sec): 5.14 - samples/sec: 1890.09 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:22,004 epoch 6 - iter 120/242 - loss 0.03634387 - time (sec): 6.44 - samples/sec: 1897.36 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:23,321 epoch 6 - iter 144/242 - loss 0.03756964 - time (sec): 7.75 - samples/sec: 1840.30 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:24,657 epoch 6 - iter 168/242 - loss 0.03954105 - time (sec): 9.09 - samples/sec: 1876.93 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:25,838 epoch 6 - iter 192/242 - loss 0.03720847 - time (sec): 10.27 - samples/sec: 1902.58 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:26,967 epoch 6 - iter 216/242 - loss 0.03699606 - time (sec): 11.40 - samples/sec: 1923.91 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:28,108 epoch 6 - iter 240/242 - loss 0.03933757 - time (sec): 12.54 - samples/sec: 1958.90 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:28,208 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:28,209 EPOCH 6 done: loss 0.0391 - lr: 0.000013
2023-10-17 10:53:28,961 DEV : loss 0.20731210708618164 - f1-score (micro avg) 0.8615
2023-10-17 10:53:28,966 saving best model
2023-10-17 10:53:29,514 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:30,740 epoch 7 - iter 24/242 - loss 0.01339709 - time (sec): 1.22 - samples/sec: 1959.31 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:31,952 epoch 7 - iter 48/242 - loss 0.02690876 - time (sec): 2.43 - samples/sec: 1914.80 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:33,064 epoch 7 - iter 72/242 - loss 0.02770343 - time (sec): 3.55 - samples/sec: 2039.73 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:34,207 epoch 7 - iter 96/242 - loss 0.02733078 - time (sec): 4.69 - samples/sec: 2061.37 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:35,326 epoch 7 - iter 120/242 - loss 0.02754959 - time (sec): 5.81 - samples/sec: 2111.21 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:36,482 epoch 7 - iter 144/242 - loss 0.02877701 - time (sec): 6.96 - samples/sec: 2093.36 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:37,671 epoch 7 - iter 168/242 - loss 0.02886521 - time (sec): 8.15 - samples/sec: 2075.61 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:38,783 epoch 7 - iter 192/242 - loss 0.02748314 - time (sec): 9.26 - samples/sec: 2098.79 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:39,905 epoch 7 - iter 216/242 - loss 0.02928343 - time (sec): 10.39 - samples/sec: 2122.71 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:41,028 epoch 7 - iter 240/242 - loss 0.03044296 - time (sec): 11.51 - samples/sec: 2140.96 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:41,130 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:41,131 EPOCH 7 done: loss 0.0303 - lr: 0.000010
2023-10-17 10:53:41,882 DEV : loss 0.23359926044940948 - f1-score (micro avg) 0.827
2023-10-17 10:53:41,887 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:43,032 epoch 8 - iter 24/242 - loss 0.03195256 - time (sec): 1.14 - samples/sec: 1874.17 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:44,194 epoch 8 - iter 48/242 - loss 0.02723979 - time (sec): 2.31 - samples/sec: 2080.64 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:45,318 epoch 8 - iter 72/242 - loss 0.02294677 - time (sec): 3.43 - samples/sec: 2087.71 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:46,505 epoch 8 - iter 96/242 - loss 0.02098985 - time (sec): 4.62 - samples/sec: 2170.01 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:47,611 epoch 8 - iter 120/242 - loss 0.02039880 - time (sec): 5.72 - samples/sec: 2189.68 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:48,689 epoch 8 - iter 144/242 - loss 0.01846555 - time (sec): 6.80 - samples/sec: 2203.37 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:49,802 epoch 8 - iter 168/242 - loss 0.02038616 - time (sec): 7.91 - samples/sec: 2169.22 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:50,907 epoch 8 - iter 192/242 - loss 0.02095739 - time (sec): 9.02 - samples/sec: 2176.58 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:52,020 epoch 8 - iter 216/242 - loss 0.01907598 - time (sec): 10.13 - samples/sec: 2196.44 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:53,141 epoch 8 - iter 240/242 - loss 0.02064253 - time (sec): 11.25 - samples/sec: 2187.10 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:53,226 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:53,227 EPOCH 8 done: loss 0.0206 - lr: 0.000007
2023-10-17 10:53:53,975 DEV : loss 0.25143641233444214 - f1-score (micro avg) 0.825
2023-10-17 10:53:53,980 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:55,135 epoch 9 - iter 24/242 - loss 0.02183672 - time (sec): 1.15 - samples/sec: 2166.99 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:56,242 epoch 9 - iter 48/242 - loss 0.01557288 - time (sec): 2.26 - samples/sec: 2123.02 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:57,385 epoch 9 - iter 72/242 - loss 0.01416315 - time (sec): 3.40 - samples/sec: 2059.83 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:58,528 epoch 9 - iter 96/242 - loss 0.01572072 - time (sec): 4.55 - samples/sec: 2049.01 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:53:59,640 epoch 9 - iter 120/242 - loss 0.01466146 - time (sec): 5.66 - samples/sec: 2044.53 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:54:00,805 epoch 9 - iter 144/242 - loss 0.01491075 - time (sec): 6.82 - samples/sec: 2086.41 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:54:01,942 epoch 9 - iter 168/242 - loss 0.01670932 - time (sec): 7.96 - samples/sec: 2113.15 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:03,059 epoch 9 - iter 192/242 - loss 0.01561535 - time (sec): 9.08 - samples/sec: 2148.82 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:04,252 epoch 9 - iter 216/242 - loss 0.01710124 - time (sec): 10.27 - samples/sec: 2161.63 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:05,365 epoch 9 - iter 240/242 - loss 0.01794107 - time (sec): 11.38 - samples/sec: 2160.84 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:05,449 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:05,450 EPOCH 9 done: loss 0.0178 - lr: 0.000003
2023-10-17 10:54:06,201 DEV : loss 0.25199437141418457 - f1-score (micro avg) 0.8229
2023-10-17 10:54:06,206 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:07,293 epoch 10 - iter 24/242 - loss 0.01009403 - time (sec): 1.08 - samples/sec: 2180.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:08,396 epoch 10 - iter 48/242 - loss 0.01346526 - time (sec): 2.19 - samples/sec: 2086.31 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:09,500 epoch 10 - iter 72/242 - loss 0.01523550 - time (sec): 3.29 - samples/sec: 2174.91 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:10,618 epoch 10 - iter 96/242 - loss 0.01404734 - time (sec): 4.41 - samples/sec: 2197.20 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:11,776 epoch 10 - iter 120/242 - loss 0.01621470 - time (sec): 5.57 - samples/sec: 2283.18 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:12,888 epoch 10 - iter 144/242 - loss 0.01390069 - time (sec): 6.68 - samples/sec: 2225.56 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:14,010 epoch 10 - iter 168/242 - loss 0.01217239 - time (sec): 7.80 - samples/sec: 2187.64 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:15,146 epoch 10 - iter 192/242 - loss 0.01207740 - time (sec): 8.94 - samples/sec: 2204.30 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:16,254 epoch 10 - iter 216/242 - loss 0.01231007 - time (sec): 10.05 - samples/sec: 2232.19 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:54:17,351 epoch 10 - iter 240/242 - loss 0.01201054 - time (sec): 11.14 - samples/sec: 2205.37 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:54:17,437 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:17,438 EPOCH 10 done: loss 0.0119 - lr: 0.000000
2023-10-17 10:54:18,220 DEV : loss 0.2569812536239624 - f1-score (micro avg) 0.8254
2023-10-17 10:54:18,602 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:18,603 Loading model from best epoch ...
2023-10-17 10:54:19,941 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 10:54:20,761
Results:
- F-score (micro) 0.8253
- F-score (macro) 0.5669
- Accuracy 0.7194
By class:
precision recall f1-score support
pers 0.8493 0.8921 0.8702 139
scope 0.8485 0.8682 0.8582 129
work 0.7126 0.7750 0.7425 80
loc 1.0000 0.2222 0.3636 9
date 0.0000 0.0000 0.0000 3
micro avg 0.8174 0.8333 0.8253 360
macro avg 0.6821 0.5515 0.5669 360
weighted avg 0.8153 0.8333 0.8176 360
2023-10-17 10:54:20,761 ----------------------------------------------------------------------------------------------------
|