File size: 24,004 Bytes
404d985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
2023-10-17 10:52:13,216 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,217 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 10:52:13,217 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,217 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Train:  966 sentences
2023-10-17 10:52:13,218         (train_with_dev=False, train_with_test=False)
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Training Params:
2023-10-17 10:52:13,218  - learning_rate: "3e-05" 
2023-10-17 10:52:13,218  - mini_batch_size: "4"
2023-10-17 10:52:13,218  - max_epochs: "10"
2023-10-17 10:52:13,218  - shuffle: "True"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Plugins:
2023-10-17 10:52:13,218  - TensorboardLogger
2023-10-17 10:52:13,218  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:52:13,218  - metric: "('micro avg', 'f1-score')"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Computation:
2023-10-17 10:52:13,218  - compute on device: cuda:0
2023-10-17 10:52:13,218  - embedding storage: none
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:13,218 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:52:14,319 epoch 1 - iter 24/242 - loss 4.05561927 - time (sec): 1.10 - samples/sec: 2190.88 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:52:15,412 epoch 1 - iter 48/242 - loss 3.46627133 - time (sec): 2.19 - samples/sec: 2166.57 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:52:16,512 epoch 1 - iter 72/242 - loss 2.62777849 - time (sec): 3.29 - samples/sec: 2147.87 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:52:17,621 epoch 1 - iter 96/242 - loss 2.06961410 - time (sec): 4.40 - samples/sec: 2218.01 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:52:18,710 epoch 1 - iter 120/242 - loss 1.78636708 - time (sec): 5.49 - samples/sec: 2194.06 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:52:19,830 epoch 1 - iter 144/242 - loss 1.54146613 - time (sec): 6.61 - samples/sec: 2211.98 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:52:20,933 epoch 1 - iter 168/242 - loss 1.34360051 - time (sec): 7.71 - samples/sec: 2243.84 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:22,058 epoch 1 - iter 192/242 - loss 1.19671631 - time (sec): 8.84 - samples/sec: 2276.02 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:23,141 epoch 1 - iter 216/242 - loss 1.11363742 - time (sec): 9.92 - samples/sec: 2253.01 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:24,233 epoch 1 - iter 240/242 - loss 1.03601016 - time (sec): 11.01 - samples/sec: 2234.83 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:52:24,322 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:24,323 EPOCH 1 done: loss 1.0336 - lr: 0.000030
2023-10-17 10:52:24,897 DEV : loss 0.2042546272277832 - f1-score (micro avg)  0.6459
2023-10-17 10:52:24,902 saving best model
2023-10-17 10:52:25,314 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:26,406 epoch 2 - iter 24/242 - loss 0.18992354 - time (sec): 1.09 - samples/sec: 2103.59 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:52:27,515 epoch 2 - iter 48/242 - loss 0.19235864 - time (sec): 2.20 - samples/sec: 2123.59 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:28,633 epoch 2 - iter 72/242 - loss 0.19211539 - time (sec): 3.32 - samples/sec: 2141.29 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:29,736 epoch 2 - iter 96/242 - loss 0.18398095 - time (sec): 4.42 - samples/sec: 2152.87 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:52:30,835 epoch 2 - iter 120/242 - loss 0.17679653 - time (sec): 5.52 - samples/sec: 2217.10 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:31,925 epoch 2 - iter 144/242 - loss 0.17400339 - time (sec): 6.61 - samples/sec: 2200.06 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:33,021 epoch 2 - iter 168/242 - loss 0.17306064 - time (sec): 7.71 - samples/sec: 2224.11 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:52:34,142 epoch 2 - iter 192/242 - loss 0.16742092 - time (sec): 8.83 - samples/sec: 2229.51 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:35,248 epoch 2 - iter 216/242 - loss 0.17430464 - time (sec): 9.93 - samples/sec: 2228.03 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:36,349 epoch 2 - iter 240/242 - loss 0.17096481 - time (sec): 11.03 - samples/sec: 2226.56 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:52:36,438 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:36,439 EPOCH 2 done: loss 0.1698 - lr: 0.000027
2023-10-17 10:52:37,325 DEV : loss 0.14782120287418365 - f1-score (micro avg)  0.8029
2023-10-17 10:52:37,330 saving best model
2023-10-17 10:52:37,889 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:39,021 epoch 3 - iter 24/242 - loss 0.12982655 - time (sec): 1.13 - samples/sec: 2135.48 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:40,123 epoch 3 - iter 48/242 - loss 0.10924199 - time (sec): 2.23 - samples/sec: 2224.54 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:41,234 epoch 3 - iter 72/242 - loss 0.09209921 - time (sec): 3.34 - samples/sec: 2302.15 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:52:42,342 epoch 3 - iter 96/242 - loss 0.09709447 - time (sec): 4.45 - samples/sec: 2276.86 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:43,444 epoch 3 - iter 120/242 - loss 0.10103426 - time (sec): 5.55 - samples/sec: 2260.26 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:44,535 epoch 3 - iter 144/242 - loss 0.10044124 - time (sec): 6.64 - samples/sec: 2260.54 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:52:45,641 epoch 3 - iter 168/242 - loss 0.10471543 - time (sec): 7.75 - samples/sec: 2271.00 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:46,742 epoch 3 - iter 192/242 - loss 0.10262288 - time (sec): 8.85 - samples/sec: 2211.03 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:47,881 epoch 3 - iter 216/242 - loss 0.10250671 - time (sec): 9.99 - samples/sec: 2233.48 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:52:48,964 epoch 3 - iter 240/242 - loss 0.10517789 - time (sec): 11.07 - samples/sec: 2216.96 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:49,053 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:49,053 EPOCH 3 done: loss 0.1058 - lr: 0.000023
2023-10-17 10:52:49,833 DEV : loss 0.16301028430461884 - f1-score (micro avg)  0.8143
2023-10-17 10:52:49,839 saving best model
2023-10-17 10:52:50,402 ----------------------------------------------------------------------------------------------------
2023-10-17 10:52:51,523 epoch 4 - iter 24/242 - loss 0.08820816 - time (sec): 1.12 - samples/sec: 1856.38 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:52,629 epoch 4 - iter 48/242 - loss 0.08121919 - time (sec): 2.22 - samples/sec: 2051.20 - lr: 0.000023 - momentum: 0.000000
2023-10-17 10:52:53,738 epoch 4 - iter 72/242 - loss 0.07061606 - time (sec): 3.33 - samples/sec: 2089.11 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:54,866 epoch 4 - iter 96/242 - loss 0.07100203 - time (sec): 4.46 - samples/sec: 2143.19 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:55,982 epoch 4 - iter 120/242 - loss 0.06984215 - time (sec): 5.58 - samples/sec: 2191.72 - lr: 0.000022 - momentum: 0.000000
2023-10-17 10:52:57,068 epoch 4 - iter 144/242 - loss 0.07062933 - time (sec): 6.66 - samples/sec: 2162.97 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:58,185 epoch 4 - iter 168/242 - loss 0.07553476 - time (sec): 7.78 - samples/sec: 2161.88 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:52:59,303 epoch 4 - iter 192/242 - loss 0.07153261 - time (sec): 8.90 - samples/sec: 2175.30 - lr: 0.000021 - momentum: 0.000000
2023-10-17 10:53:00,435 epoch 4 - iter 216/242 - loss 0.07264171 - time (sec): 10.03 - samples/sec: 2184.21 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:01,529 epoch 4 - iter 240/242 - loss 0.07099997 - time (sec): 11.12 - samples/sec: 2214.28 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:01,620 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:01,620 EPOCH 4 done: loss 0.0707 - lr: 0.000020
2023-10-17 10:53:02,370 DEV : loss 0.16144302487373352 - f1-score (micro avg)  0.8344
2023-10-17 10:53:02,375 saving best model
2023-10-17 10:53:02,879 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:04,051 epoch 5 - iter 24/242 - loss 0.03403467 - time (sec): 1.17 - samples/sec: 1861.56 - lr: 0.000020 - momentum: 0.000000
2023-10-17 10:53:05,152 epoch 5 - iter 48/242 - loss 0.04342883 - time (sec): 2.27 - samples/sec: 1958.76 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:06,263 epoch 5 - iter 72/242 - loss 0.04288749 - time (sec): 3.38 - samples/sec: 2083.67 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:07,380 epoch 5 - iter 96/242 - loss 0.04581926 - time (sec): 4.50 - samples/sec: 2084.16 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:53:08,465 epoch 5 - iter 120/242 - loss 0.04481656 - time (sec): 5.58 - samples/sec: 2109.10 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:09,619 epoch 5 - iter 144/242 - loss 0.04898354 - time (sec): 6.73 - samples/sec: 2164.60 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:10,700 epoch 5 - iter 168/242 - loss 0.05051468 - time (sec): 7.82 - samples/sec: 2156.24 - lr: 0.000018 - momentum: 0.000000
2023-10-17 10:53:11,843 epoch 5 - iter 192/242 - loss 0.05227590 - time (sec): 8.96 - samples/sec: 2158.97 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:12,960 epoch 5 - iter 216/242 - loss 0.05101012 - time (sec): 10.08 - samples/sec: 2170.68 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:14,094 epoch 5 - iter 240/242 - loss 0.05102788 - time (sec): 11.21 - samples/sec: 2199.28 - lr: 0.000017 - momentum: 0.000000
2023-10-17 10:53:14,185 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:14,185 EPOCH 5 done: loss 0.0509 - lr: 0.000017
2023-10-17 10:53:14,978 DEV : loss 0.19747966527938843 - f1-score (micro avg)  0.8398
2023-10-17 10:53:14,985 saving best model
2023-10-17 10:53:15,559 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:16,884 epoch 6 - iter 24/242 - loss 0.02212071 - time (sec): 1.32 - samples/sec: 1860.89 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:18,184 epoch 6 - iter 48/242 - loss 0.03533340 - time (sec): 2.62 - samples/sec: 1891.13 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:19,423 epoch 6 - iter 72/242 - loss 0.03639866 - time (sec): 3.86 - samples/sec: 1948.61 - lr: 0.000016 - momentum: 0.000000
2023-10-17 10:53:20,713 epoch 6 - iter 96/242 - loss 0.03590078 - time (sec): 5.14 - samples/sec: 1890.09 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:22,004 epoch 6 - iter 120/242 - loss 0.03634387 - time (sec): 6.44 - samples/sec: 1897.36 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:23,321 epoch 6 - iter 144/242 - loss 0.03756964 - time (sec): 7.75 - samples/sec: 1840.30 - lr: 0.000015 - momentum: 0.000000
2023-10-17 10:53:24,657 epoch 6 - iter 168/242 - loss 0.03954105 - time (sec): 9.09 - samples/sec: 1876.93 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:25,838 epoch 6 - iter 192/242 - loss 0.03720847 - time (sec): 10.27 - samples/sec: 1902.58 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:26,967 epoch 6 - iter 216/242 - loss 0.03699606 - time (sec): 11.40 - samples/sec: 1923.91 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:53:28,108 epoch 6 - iter 240/242 - loss 0.03933757 - time (sec): 12.54 - samples/sec: 1958.90 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:28,208 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:28,209 EPOCH 6 done: loss 0.0391 - lr: 0.000013
2023-10-17 10:53:28,961 DEV : loss 0.20731210708618164 - f1-score (micro avg)  0.8615
2023-10-17 10:53:28,966 saving best model
2023-10-17 10:53:29,514 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:30,740 epoch 7 - iter 24/242 - loss 0.01339709 - time (sec): 1.22 - samples/sec: 1959.31 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:31,952 epoch 7 - iter 48/242 - loss 0.02690876 - time (sec): 2.43 - samples/sec: 1914.80 - lr: 0.000013 - momentum: 0.000000
2023-10-17 10:53:33,064 epoch 7 - iter 72/242 - loss 0.02770343 - time (sec): 3.55 - samples/sec: 2039.73 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:34,207 epoch 7 - iter 96/242 - loss 0.02733078 - time (sec): 4.69 - samples/sec: 2061.37 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:35,326 epoch 7 - iter 120/242 - loss 0.02754959 - time (sec): 5.81 - samples/sec: 2111.21 - lr: 0.000012 - momentum: 0.000000
2023-10-17 10:53:36,482 epoch 7 - iter 144/242 - loss 0.02877701 - time (sec): 6.96 - samples/sec: 2093.36 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:37,671 epoch 7 - iter 168/242 - loss 0.02886521 - time (sec): 8.15 - samples/sec: 2075.61 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:38,783 epoch 7 - iter 192/242 - loss 0.02748314 - time (sec): 9.26 - samples/sec: 2098.79 - lr: 0.000011 - momentum: 0.000000
2023-10-17 10:53:39,905 epoch 7 - iter 216/242 - loss 0.02928343 - time (sec): 10.39 - samples/sec: 2122.71 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:41,028 epoch 7 - iter 240/242 - loss 0.03044296 - time (sec): 11.51 - samples/sec: 2140.96 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:41,130 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:41,131 EPOCH 7 done: loss 0.0303 - lr: 0.000010
2023-10-17 10:53:41,882 DEV : loss 0.23359926044940948 - f1-score (micro avg)  0.827
2023-10-17 10:53:41,887 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:43,032 epoch 8 - iter 24/242 - loss 0.03195256 - time (sec): 1.14 - samples/sec: 1874.17 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:53:44,194 epoch 8 - iter 48/242 - loss 0.02723979 - time (sec): 2.31 - samples/sec: 2080.64 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:45,318 epoch 8 - iter 72/242 - loss 0.02294677 - time (sec): 3.43 - samples/sec: 2087.71 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:46,505 epoch 8 - iter 96/242 - loss 0.02098985 - time (sec): 4.62 - samples/sec: 2170.01 - lr: 0.000009 - momentum: 0.000000
2023-10-17 10:53:47,611 epoch 8 - iter 120/242 - loss 0.02039880 - time (sec): 5.72 - samples/sec: 2189.68 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:48,689 epoch 8 - iter 144/242 - loss 0.01846555 - time (sec): 6.80 - samples/sec: 2203.37 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:49,802 epoch 8 - iter 168/242 - loss 0.02038616 - time (sec): 7.91 - samples/sec: 2169.22 - lr: 0.000008 - momentum: 0.000000
2023-10-17 10:53:50,907 epoch 8 - iter 192/242 - loss 0.02095739 - time (sec): 9.02 - samples/sec: 2176.58 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:52,020 epoch 8 - iter 216/242 - loss 0.01907598 - time (sec): 10.13 - samples/sec: 2196.44 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:53,141 epoch 8 - iter 240/242 - loss 0.02064253 - time (sec): 11.25 - samples/sec: 2187.10 - lr: 0.000007 - momentum: 0.000000
2023-10-17 10:53:53,226 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:53,227 EPOCH 8 done: loss 0.0206 - lr: 0.000007
2023-10-17 10:53:53,975 DEV : loss 0.25143641233444214 - f1-score (micro avg)  0.825
2023-10-17 10:53:53,980 ----------------------------------------------------------------------------------------------------
2023-10-17 10:53:55,135 epoch 9 - iter 24/242 - loss 0.02183672 - time (sec): 1.15 - samples/sec: 2166.99 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:56,242 epoch 9 - iter 48/242 - loss 0.01557288 - time (sec): 2.26 - samples/sec: 2123.02 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:57,385 epoch 9 - iter 72/242 - loss 0.01416315 - time (sec): 3.40 - samples/sec: 2059.83 - lr: 0.000006 - momentum: 0.000000
2023-10-17 10:53:58,528 epoch 9 - iter 96/242 - loss 0.01572072 - time (sec): 4.55 - samples/sec: 2049.01 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:53:59,640 epoch 9 - iter 120/242 - loss 0.01466146 - time (sec): 5.66 - samples/sec: 2044.53 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:54:00,805 epoch 9 - iter 144/242 - loss 0.01491075 - time (sec): 6.82 - samples/sec: 2086.41 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:54:01,942 epoch 9 - iter 168/242 - loss 0.01670932 - time (sec): 7.96 - samples/sec: 2113.15 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:03,059 epoch 9 - iter 192/242 - loss 0.01561535 - time (sec): 9.08 - samples/sec: 2148.82 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:04,252 epoch 9 - iter 216/242 - loss 0.01710124 - time (sec): 10.27 - samples/sec: 2161.63 - lr: 0.000004 - momentum: 0.000000
2023-10-17 10:54:05,365 epoch 9 - iter 240/242 - loss 0.01794107 - time (sec): 11.38 - samples/sec: 2160.84 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:05,449 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:05,450 EPOCH 9 done: loss 0.0178 - lr: 0.000003
2023-10-17 10:54:06,201 DEV : loss 0.25199437141418457 - f1-score (micro avg)  0.8229
2023-10-17 10:54:06,206 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:07,293 epoch 10 - iter 24/242 - loss 0.01009403 - time (sec): 1.08 - samples/sec: 2180.89 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:08,396 epoch 10 - iter 48/242 - loss 0.01346526 - time (sec): 2.19 - samples/sec: 2086.31 - lr: 0.000003 - momentum: 0.000000
2023-10-17 10:54:09,500 epoch 10 - iter 72/242 - loss 0.01523550 - time (sec): 3.29 - samples/sec: 2174.91 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:10,618 epoch 10 - iter 96/242 - loss 0.01404734 - time (sec): 4.41 - samples/sec: 2197.20 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:11,776 epoch 10 - iter 120/242 - loss 0.01621470 - time (sec): 5.57 - samples/sec: 2283.18 - lr: 0.000002 - momentum: 0.000000
2023-10-17 10:54:12,888 epoch 10 - iter 144/242 - loss 0.01390069 - time (sec): 6.68 - samples/sec: 2225.56 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:14,010 epoch 10 - iter 168/242 - loss 0.01217239 - time (sec): 7.80 - samples/sec: 2187.64 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:15,146 epoch 10 - iter 192/242 - loss 0.01207740 - time (sec): 8.94 - samples/sec: 2204.30 - lr: 0.000001 - momentum: 0.000000
2023-10-17 10:54:16,254 epoch 10 - iter 216/242 - loss 0.01231007 - time (sec): 10.05 - samples/sec: 2232.19 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:54:17,351 epoch 10 - iter 240/242 - loss 0.01201054 - time (sec): 11.14 - samples/sec: 2205.37 - lr: 0.000000 - momentum: 0.000000
2023-10-17 10:54:17,437 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:17,438 EPOCH 10 done: loss 0.0119 - lr: 0.000000
2023-10-17 10:54:18,220 DEV : loss 0.2569812536239624 - f1-score (micro avg)  0.8254
2023-10-17 10:54:18,602 ----------------------------------------------------------------------------------------------------
2023-10-17 10:54:18,603 Loading model from best epoch ...
2023-10-17 10:54:19,941 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 10:54:20,761 
Results:
- F-score (micro) 0.8253
- F-score (macro) 0.5669
- Accuracy 0.7194

By class:
              precision    recall  f1-score   support

        pers     0.8493    0.8921    0.8702       139
       scope     0.8485    0.8682    0.8582       129
        work     0.7126    0.7750    0.7425        80
         loc     1.0000    0.2222    0.3636         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8174    0.8333    0.8253       360
   macro avg     0.6821    0.5515    0.5669       360
weighted avg     0.8153    0.8333    0.8176       360

2023-10-17 10:54:20,761 ----------------------------------------------------------------------------------------------------