File size: 25,190 Bytes
95b954a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
2023-10-06 22:19:57,613 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,615 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): T5LayerNorm()
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): T5LayerNorm()
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-06 22:19:57,615 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,615 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /app/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-06 22:19:57,615 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,615 Train:  1100 sentences
2023-10-06 22:19:57,615         (train_with_dev=False, train_with_test=False)
2023-10-06 22:19:57,615 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,615 Training Params:
2023-10-06 22:19:57,616  - learning_rate: "0.00016" 
2023-10-06 22:19:57,616  - mini_batch_size: "4"
2023-10-06 22:19:57,616  - max_epochs: "10"
2023-10-06 22:19:57,616  - shuffle: "True"
2023-10-06 22:19:57,616 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,616 Plugins:
2023-10-06 22:19:57,616  - TensorboardLogger
2023-10-06 22:19:57,616  - LinearScheduler | warmup_fraction: '0.1'
2023-10-06 22:19:57,616 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,616 Final evaluation on model from best epoch (best-model.pt)
2023-10-06 22:19:57,616  - metric: "('micro avg', 'f1-score')"
2023-10-06 22:19:57,616 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,616 Computation:
2023-10-06 22:19:57,616  - compute on device: cuda:0
2023-10-06 22:19:57,616  - embedding storage: none
2023-10-06 22:19:57,617 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,617 Model training base path: "hmbench-ajmc/de-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00016-poolingfirst-layers-1-crfFalse-2"
2023-10-06 22:19:57,617 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,617 ----------------------------------------------------------------------------------------------------
2023-10-06 22:19:57,617 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-06 22:20:08,003 epoch 1 - iter 27/275 - loss 3.23046973 - time (sec): 10.38 - samples/sec: 207.90 - lr: 0.000015 - momentum: 0.000000
2023-10-06 22:20:19,207 epoch 1 - iter 54/275 - loss 3.22045630 - time (sec): 21.59 - samples/sec: 207.88 - lr: 0.000031 - momentum: 0.000000
2023-10-06 22:20:30,543 epoch 1 - iter 81/275 - loss 3.20278466 - time (sec): 32.92 - samples/sec: 209.54 - lr: 0.000047 - momentum: 0.000000
2023-10-06 22:20:40,870 epoch 1 - iter 108/275 - loss 3.16363759 - time (sec): 43.25 - samples/sec: 205.15 - lr: 0.000062 - momentum: 0.000000
2023-10-06 22:20:52,093 epoch 1 - iter 135/275 - loss 3.07464330 - time (sec): 54.47 - samples/sec: 205.49 - lr: 0.000078 - momentum: 0.000000
2023-10-06 22:21:01,940 epoch 1 - iter 162/275 - loss 2.98484966 - time (sec): 64.32 - samples/sec: 203.73 - lr: 0.000094 - momentum: 0.000000
2023-10-06 22:21:13,053 epoch 1 - iter 189/275 - loss 2.86837180 - time (sec): 75.43 - samples/sec: 205.24 - lr: 0.000109 - momentum: 0.000000
2023-10-06 22:21:23,565 epoch 1 - iter 216/275 - loss 2.75403892 - time (sec): 85.95 - samples/sec: 205.56 - lr: 0.000125 - momentum: 0.000000
2023-10-06 22:21:34,838 epoch 1 - iter 243/275 - loss 2.61332537 - time (sec): 97.22 - samples/sec: 206.98 - lr: 0.000141 - momentum: 0.000000
2023-10-06 22:21:45,272 epoch 1 - iter 270/275 - loss 2.49139408 - time (sec): 107.65 - samples/sec: 207.32 - lr: 0.000157 - momentum: 0.000000
2023-10-06 22:21:47,401 ----------------------------------------------------------------------------------------------------
2023-10-06 22:21:47,402 EPOCH 1 done: loss 2.4654 - lr: 0.000157
2023-10-06 22:21:53,775 DEV : loss 1.122562289237976 - f1-score (micro avg)  0.0
2023-10-06 22:21:53,781 ----------------------------------------------------------------------------------------------------
2023-10-06 22:22:04,252 epoch 2 - iter 27/275 - loss 1.06316421 - time (sec): 10.47 - samples/sec: 209.84 - lr: 0.000158 - momentum: 0.000000
2023-10-06 22:22:15,114 epoch 2 - iter 54/275 - loss 0.99982815 - time (sec): 21.33 - samples/sec: 210.39 - lr: 0.000157 - momentum: 0.000000
2023-10-06 22:22:25,327 epoch 2 - iter 81/275 - loss 0.95642739 - time (sec): 31.54 - samples/sec: 206.41 - lr: 0.000155 - momentum: 0.000000
2023-10-06 22:22:36,243 epoch 2 - iter 108/275 - loss 0.93981903 - time (sec): 42.46 - samples/sec: 206.47 - lr: 0.000153 - momentum: 0.000000
2023-10-06 22:22:47,493 epoch 2 - iter 135/275 - loss 0.87433260 - time (sec): 53.71 - samples/sec: 207.37 - lr: 0.000151 - momentum: 0.000000
2023-10-06 22:22:58,582 epoch 2 - iter 162/275 - loss 0.82965738 - time (sec): 64.80 - samples/sec: 205.66 - lr: 0.000150 - momentum: 0.000000
2023-10-06 22:23:08,837 epoch 2 - iter 189/275 - loss 0.79093517 - time (sec): 75.05 - samples/sec: 204.31 - lr: 0.000148 - momentum: 0.000000
2023-10-06 22:23:19,870 epoch 2 - iter 216/275 - loss 0.74140812 - time (sec): 86.09 - samples/sec: 204.55 - lr: 0.000146 - momentum: 0.000000
2023-10-06 22:23:30,843 epoch 2 - iter 243/275 - loss 0.70765895 - time (sec): 97.06 - samples/sec: 205.88 - lr: 0.000144 - momentum: 0.000000
2023-10-06 22:23:41,422 epoch 2 - iter 270/275 - loss 0.68311458 - time (sec): 107.64 - samples/sec: 206.89 - lr: 0.000143 - momentum: 0.000000
2023-10-06 22:23:43,598 ----------------------------------------------------------------------------------------------------
2023-10-06 22:23:43,598 EPOCH 2 done: loss 0.6774 - lr: 0.000143
2023-10-06 22:23:50,082 DEV : loss 0.40427157282829285 - f1-score (micro avg)  0.4749
2023-10-06 22:23:50,088 saving best model
2023-10-06 22:23:50,952 ----------------------------------------------------------------------------------------------------
2023-10-06 22:24:01,156 epoch 3 - iter 27/275 - loss 0.38574587 - time (sec): 10.20 - samples/sec: 209.75 - lr: 0.000141 - momentum: 0.000000
2023-10-06 22:24:12,561 epoch 3 - iter 54/275 - loss 0.36307024 - time (sec): 21.61 - samples/sec: 212.24 - lr: 0.000139 - momentum: 0.000000
2023-10-06 22:24:23,860 epoch 3 - iter 81/275 - loss 0.36188610 - time (sec): 32.91 - samples/sec: 210.66 - lr: 0.000137 - momentum: 0.000000
2023-10-06 22:24:34,334 epoch 3 - iter 108/275 - loss 0.34404760 - time (sec): 43.38 - samples/sec: 207.15 - lr: 0.000135 - momentum: 0.000000
2023-10-06 22:24:44,676 epoch 3 - iter 135/275 - loss 0.32394867 - time (sec): 53.72 - samples/sec: 205.00 - lr: 0.000134 - momentum: 0.000000
2023-10-06 22:24:56,051 epoch 3 - iter 162/275 - loss 0.32128496 - time (sec): 65.10 - samples/sec: 206.58 - lr: 0.000132 - momentum: 0.000000
2023-10-06 22:25:07,011 epoch 3 - iter 189/275 - loss 0.31666190 - time (sec): 76.06 - samples/sec: 206.99 - lr: 0.000130 - momentum: 0.000000
2023-10-06 22:25:17,509 epoch 3 - iter 216/275 - loss 0.30596676 - time (sec): 86.56 - samples/sec: 205.75 - lr: 0.000128 - momentum: 0.000000
2023-10-06 22:25:28,963 epoch 3 - iter 243/275 - loss 0.29289012 - time (sec): 98.01 - samples/sec: 206.87 - lr: 0.000127 - momentum: 0.000000
2023-10-06 22:25:39,328 epoch 3 - iter 270/275 - loss 0.28836828 - time (sec): 108.38 - samples/sec: 206.99 - lr: 0.000125 - momentum: 0.000000
2023-10-06 22:25:41,093 ----------------------------------------------------------------------------------------------------
2023-10-06 22:25:41,093 EPOCH 3 done: loss 0.2864 - lr: 0.000125
2023-10-06 22:25:47,636 DEV : loss 0.19967962801456451 - f1-score (micro avg)  0.7842
2023-10-06 22:25:47,642 saving best model
2023-10-06 22:25:48,570 ----------------------------------------------------------------------------------------------------
2023-10-06 22:25:59,737 epoch 4 - iter 27/275 - loss 0.18598406 - time (sec): 11.17 - samples/sec: 212.26 - lr: 0.000123 - momentum: 0.000000
2023-10-06 22:26:10,416 epoch 4 - iter 54/275 - loss 0.17351357 - time (sec): 21.84 - samples/sec: 212.41 - lr: 0.000121 - momentum: 0.000000
2023-10-06 22:26:21,077 epoch 4 - iter 81/275 - loss 0.18311547 - time (sec): 32.51 - samples/sec: 212.45 - lr: 0.000119 - momentum: 0.000000
2023-10-06 22:26:32,048 epoch 4 - iter 108/275 - loss 0.17408439 - time (sec): 43.48 - samples/sec: 212.85 - lr: 0.000118 - momentum: 0.000000
2023-10-06 22:26:42,183 epoch 4 - iter 135/275 - loss 0.17031787 - time (sec): 53.61 - samples/sec: 209.79 - lr: 0.000116 - momentum: 0.000000
2023-10-06 22:26:52,816 epoch 4 - iter 162/275 - loss 0.16848434 - time (sec): 64.24 - samples/sec: 208.98 - lr: 0.000114 - momentum: 0.000000
2023-10-06 22:27:03,836 epoch 4 - iter 189/275 - loss 0.16145777 - time (sec): 75.27 - samples/sec: 208.37 - lr: 0.000112 - momentum: 0.000000
2023-10-06 22:27:14,515 epoch 4 - iter 216/275 - loss 0.15556608 - time (sec): 85.94 - samples/sec: 208.44 - lr: 0.000111 - momentum: 0.000000
2023-10-06 22:27:24,940 epoch 4 - iter 243/275 - loss 0.15447509 - time (sec): 96.37 - samples/sec: 208.45 - lr: 0.000109 - momentum: 0.000000
2023-10-06 22:27:36,076 epoch 4 - iter 270/275 - loss 0.15163452 - time (sec): 107.50 - samples/sec: 208.14 - lr: 0.000107 - momentum: 0.000000
2023-10-06 22:27:38,020 ----------------------------------------------------------------------------------------------------
2023-10-06 22:27:38,020 EPOCH 4 done: loss 0.1501 - lr: 0.000107
2023-10-06 22:27:44,585 DEV : loss 0.1390346884727478 - f1-score (micro avg)  0.8291
2023-10-06 22:27:44,590 saving best model
2023-10-06 22:27:45,511 ----------------------------------------------------------------------------------------------------
2023-10-06 22:27:56,779 epoch 5 - iter 27/275 - loss 0.12408828 - time (sec): 11.27 - samples/sec: 223.95 - lr: 0.000105 - momentum: 0.000000
2023-10-06 22:28:07,327 epoch 5 - iter 54/275 - loss 0.11531775 - time (sec): 21.81 - samples/sec: 212.35 - lr: 0.000103 - momentum: 0.000000
2023-10-06 22:28:18,432 epoch 5 - iter 81/275 - loss 0.10327970 - time (sec): 32.92 - samples/sec: 210.97 - lr: 0.000102 - momentum: 0.000000
2023-10-06 22:28:29,135 epoch 5 - iter 108/275 - loss 0.09930425 - time (sec): 43.62 - samples/sec: 209.99 - lr: 0.000100 - momentum: 0.000000
2023-10-06 22:28:39,069 epoch 5 - iter 135/275 - loss 0.09480377 - time (sec): 53.56 - samples/sec: 206.50 - lr: 0.000098 - momentum: 0.000000
2023-10-06 22:28:50,333 epoch 5 - iter 162/275 - loss 0.08876726 - time (sec): 64.82 - samples/sec: 207.54 - lr: 0.000096 - momentum: 0.000000
2023-10-06 22:29:01,744 epoch 5 - iter 189/275 - loss 0.09497833 - time (sec): 76.23 - samples/sec: 208.37 - lr: 0.000095 - momentum: 0.000000
2023-10-06 22:29:12,196 epoch 5 - iter 216/275 - loss 0.09275557 - time (sec): 86.68 - samples/sec: 206.95 - lr: 0.000093 - momentum: 0.000000
2023-10-06 22:29:22,893 epoch 5 - iter 243/275 - loss 0.09396631 - time (sec): 97.38 - samples/sec: 206.35 - lr: 0.000091 - momentum: 0.000000
2023-10-06 22:29:33,633 epoch 5 - iter 270/275 - loss 0.09534730 - time (sec): 108.12 - samples/sec: 206.59 - lr: 0.000089 - momentum: 0.000000
2023-10-06 22:29:35,734 ----------------------------------------------------------------------------------------------------
2023-10-06 22:29:35,734 EPOCH 5 done: loss 0.0944 - lr: 0.000089
2023-10-06 22:29:42,409 DEV : loss 0.12325194478034973 - f1-score (micro avg)  0.8632
2023-10-06 22:29:42,415 saving best model
2023-10-06 22:29:43,340 ----------------------------------------------------------------------------------------------------
2023-10-06 22:29:54,552 epoch 6 - iter 27/275 - loss 0.05850414 - time (sec): 11.21 - samples/sec: 205.26 - lr: 0.000087 - momentum: 0.000000
2023-10-06 22:30:05,979 epoch 6 - iter 54/275 - loss 0.06612571 - time (sec): 22.64 - samples/sec: 208.69 - lr: 0.000086 - momentum: 0.000000
2023-10-06 22:30:17,098 epoch 6 - iter 81/275 - loss 0.06088849 - time (sec): 33.76 - samples/sec: 210.45 - lr: 0.000084 - momentum: 0.000000
2023-10-06 22:30:28,140 epoch 6 - iter 108/275 - loss 0.06707336 - time (sec): 44.80 - samples/sec: 209.99 - lr: 0.000082 - momentum: 0.000000
2023-10-06 22:30:38,494 epoch 6 - iter 135/275 - loss 0.06978029 - time (sec): 55.15 - samples/sec: 209.21 - lr: 0.000080 - momentum: 0.000000
2023-10-06 22:30:48,317 epoch 6 - iter 162/275 - loss 0.07177387 - time (sec): 64.97 - samples/sec: 207.26 - lr: 0.000079 - momentum: 0.000000
2023-10-06 22:30:59,170 epoch 6 - iter 189/275 - loss 0.06989013 - time (sec): 75.83 - samples/sec: 206.96 - lr: 0.000077 - momentum: 0.000000
2023-10-06 22:31:09,796 epoch 6 - iter 216/275 - loss 0.07138482 - time (sec): 86.45 - samples/sec: 206.94 - lr: 0.000075 - momentum: 0.000000
2023-10-06 22:31:20,268 epoch 6 - iter 243/275 - loss 0.07213276 - time (sec): 96.93 - samples/sec: 206.88 - lr: 0.000073 - momentum: 0.000000
2023-10-06 22:31:31,421 epoch 6 - iter 270/275 - loss 0.07074569 - time (sec): 108.08 - samples/sec: 206.66 - lr: 0.000072 - momentum: 0.000000
2023-10-06 22:31:33,525 ----------------------------------------------------------------------------------------------------
2023-10-06 22:31:33,525 EPOCH 6 done: loss 0.0704 - lr: 0.000072
2023-10-06 22:31:40,161 DEV : loss 0.11782091856002808 - f1-score (micro avg)  0.8678
2023-10-06 22:31:40,167 saving best model
2023-10-06 22:31:41,101 ----------------------------------------------------------------------------------------------------
2023-10-06 22:31:52,232 epoch 7 - iter 27/275 - loss 0.03938381 - time (sec): 11.13 - samples/sec: 217.72 - lr: 0.000070 - momentum: 0.000000
2023-10-06 22:32:03,100 epoch 7 - iter 54/275 - loss 0.05396100 - time (sec): 22.00 - samples/sec: 212.80 - lr: 0.000068 - momentum: 0.000000
2023-10-06 22:32:13,461 epoch 7 - iter 81/275 - loss 0.04534983 - time (sec): 32.36 - samples/sec: 207.33 - lr: 0.000066 - momentum: 0.000000
2023-10-06 22:32:24,012 epoch 7 - iter 108/275 - loss 0.04423814 - time (sec): 42.91 - samples/sec: 205.74 - lr: 0.000064 - momentum: 0.000000
2023-10-06 22:32:34,380 epoch 7 - iter 135/275 - loss 0.04611314 - time (sec): 53.28 - samples/sec: 205.40 - lr: 0.000063 - momentum: 0.000000
2023-10-06 22:32:45,931 epoch 7 - iter 162/275 - loss 0.04893617 - time (sec): 64.83 - samples/sec: 206.47 - lr: 0.000061 - momentum: 0.000000
2023-10-06 22:32:56,333 epoch 7 - iter 189/275 - loss 0.05266054 - time (sec): 75.23 - samples/sec: 205.04 - lr: 0.000059 - momentum: 0.000000
2023-10-06 22:33:06,956 epoch 7 - iter 216/275 - loss 0.05442865 - time (sec): 85.85 - samples/sec: 205.12 - lr: 0.000058 - momentum: 0.000000
2023-10-06 22:33:17,494 epoch 7 - iter 243/275 - loss 0.05907969 - time (sec): 96.39 - samples/sec: 205.58 - lr: 0.000056 - momentum: 0.000000
2023-10-06 22:33:28,918 epoch 7 - iter 270/275 - loss 0.05681461 - time (sec): 107.82 - samples/sec: 206.86 - lr: 0.000054 - momentum: 0.000000
2023-10-06 22:33:31,093 ----------------------------------------------------------------------------------------------------
2023-10-06 22:33:31,093 EPOCH 7 done: loss 0.0578 - lr: 0.000054
2023-10-06 22:33:37,713 DEV : loss 0.11987826228141785 - f1-score (micro avg)  0.882
2023-10-06 22:33:37,719 saving best model
2023-10-06 22:33:38,646 ----------------------------------------------------------------------------------------------------
2023-10-06 22:33:49,334 epoch 8 - iter 27/275 - loss 0.03329545 - time (sec): 10.69 - samples/sec: 201.75 - lr: 0.000052 - momentum: 0.000000
2023-10-06 22:33:59,757 epoch 8 - iter 54/275 - loss 0.04592979 - time (sec): 21.11 - samples/sec: 204.50 - lr: 0.000050 - momentum: 0.000000
2023-10-06 22:34:10,984 epoch 8 - iter 81/275 - loss 0.05586859 - time (sec): 32.34 - samples/sec: 207.82 - lr: 0.000048 - momentum: 0.000000
2023-10-06 22:34:22,267 epoch 8 - iter 108/275 - loss 0.05455353 - time (sec): 43.62 - samples/sec: 208.92 - lr: 0.000047 - momentum: 0.000000
2023-10-06 22:34:33,165 epoch 8 - iter 135/275 - loss 0.04841264 - time (sec): 54.52 - samples/sec: 209.27 - lr: 0.000045 - momentum: 0.000000
2023-10-06 22:34:43,597 epoch 8 - iter 162/275 - loss 0.04875369 - time (sec): 64.95 - samples/sec: 208.67 - lr: 0.000043 - momentum: 0.000000
2023-10-06 22:34:54,186 epoch 8 - iter 189/275 - loss 0.04671139 - time (sec): 75.54 - samples/sec: 207.58 - lr: 0.000042 - momentum: 0.000000
2023-10-06 22:35:05,512 epoch 8 - iter 216/275 - loss 0.04691085 - time (sec): 86.86 - samples/sec: 208.67 - lr: 0.000040 - momentum: 0.000000
2023-10-06 22:35:15,731 epoch 8 - iter 243/275 - loss 0.04408575 - time (sec): 97.08 - samples/sec: 206.68 - lr: 0.000038 - momentum: 0.000000
2023-10-06 22:35:26,627 epoch 8 - iter 270/275 - loss 0.04172358 - time (sec): 107.98 - samples/sec: 206.96 - lr: 0.000036 - momentum: 0.000000
2023-10-06 22:35:28,725 ----------------------------------------------------------------------------------------------------
2023-10-06 22:35:28,725 EPOCH 8 done: loss 0.0429 - lr: 0.000036
2023-10-06 22:35:35,343 DEV : loss 0.12027797102928162 - f1-score (micro avg)  0.8854
2023-10-06 22:35:35,349 saving best model
2023-10-06 22:35:36,284 ----------------------------------------------------------------------------------------------------
2023-10-06 22:35:46,952 epoch 9 - iter 27/275 - loss 0.04986711 - time (sec): 10.67 - samples/sec: 215.71 - lr: 0.000034 - momentum: 0.000000
2023-10-06 22:35:58,646 epoch 9 - iter 54/275 - loss 0.03493711 - time (sec): 22.36 - samples/sec: 215.55 - lr: 0.000032 - momentum: 0.000000
2023-10-06 22:36:08,815 epoch 9 - iter 81/275 - loss 0.03697438 - time (sec): 32.53 - samples/sec: 207.97 - lr: 0.000031 - momentum: 0.000000
2023-10-06 22:36:19,397 epoch 9 - iter 108/275 - loss 0.03623976 - time (sec): 43.11 - samples/sec: 206.28 - lr: 0.000029 - momentum: 0.000000
2023-10-06 22:36:30,579 epoch 9 - iter 135/275 - loss 0.03334176 - time (sec): 54.29 - samples/sec: 207.21 - lr: 0.000027 - momentum: 0.000000
2023-10-06 22:36:41,808 epoch 9 - iter 162/275 - loss 0.03063102 - time (sec): 65.52 - samples/sec: 208.74 - lr: 0.000026 - momentum: 0.000000
2023-10-06 22:36:52,183 epoch 9 - iter 189/275 - loss 0.02832208 - time (sec): 75.90 - samples/sec: 207.31 - lr: 0.000024 - momentum: 0.000000
2023-10-06 22:37:02,502 epoch 9 - iter 216/275 - loss 0.03178635 - time (sec): 86.22 - samples/sec: 206.19 - lr: 0.000022 - momentum: 0.000000
2023-10-06 22:37:12,629 epoch 9 - iter 243/275 - loss 0.03567592 - time (sec): 96.34 - samples/sec: 206.17 - lr: 0.000020 - momentum: 0.000000
2023-10-06 22:37:24,066 epoch 9 - iter 270/275 - loss 0.03589895 - time (sec): 107.78 - samples/sec: 206.74 - lr: 0.000019 - momentum: 0.000000
2023-10-06 22:37:26,287 ----------------------------------------------------------------------------------------------------
2023-10-06 22:37:26,287 EPOCH 9 done: loss 0.0402 - lr: 0.000019
2023-10-06 22:37:32,922 DEV : loss 0.12215113639831543 - f1-score (micro avg)  0.8852
2023-10-06 22:37:32,928 ----------------------------------------------------------------------------------------------------
2023-10-06 22:37:43,513 epoch 10 - iter 27/275 - loss 0.03017664 - time (sec): 10.58 - samples/sec: 207.01 - lr: 0.000017 - momentum: 0.000000
2023-10-06 22:37:54,245 epoch 10 - iter 54/275 - loss 0.03648685 - time (sec): 21.32 - samples/sec: 208.34 - lr: 0.000015 - momentum: 0.000000
2023-10-06 22:38:04,499 epoch 10 - iter 81/275 - loss 0.03264491 - time (sec): 31.57 - samples/sec: 204.69 - lr: 0.000013 - momentum: 0.000000
2023-10-06 22:38:15,205 epoch 10 - iter 108/275 - loss 0.03814732 - time (sec): 42.28 - samples/sec: 203.19 - lr: 0.000011 - momentum: 0.000000
2023-10-06 22:38:27,605 epoch 10 - iter 135/275 - loss 0.04002682 - time (sec): 54.68 - samples/sec: 205.45 - lr: 0.000010 - momentum: 0.000000
2023-10-06 22:38:37,681 epoch 10 - iter 162/275 - loss 0.04109835 - time (sec): 64.75 - samples/sec: 205.91 - lr: 0.000008 - momentum: 0.000000
2023-10-06 22:38:48,711 epoch 10 - iter 189/275 - loss 0.03880280 - time (sec): 75.78 - samples/sec: 206.50 - lr: 0.000006 - momentum: 0.000000
2023-10-06 22:38:59,906 epoch 10 - iter 216/275 - loss 0.03568743 - time (sec): 86.98 - samples/sec: 207.39 - lr: 0.000004 - momentum: 0.000000
2023-10-06 22:39:10,843 epoch 10 - iter 243/275 - loss 0.03599762 - time (sec): 97.91 - samples/sec: 207.55 - lr: 0.000003 - momentum: 0.000000
2023-10-06 22:39:21,179 epoch 10 - iter 270/275 - loss 0.03470141 - time (sec): 108.25 - samples/sec: 206.87 - lr: 0.000001 - momentum: 0.000000
2023-10-06 22:39:22,963 ----------------------------------------------------------------------------------------------------
2023-10-06 22:39:22,963 EPOCH 10 done: loss 0.0351 - lr: 0.000001
2023-10-06 22:39:29,572 DEV : loss 0.12222656607627869 - f1-score (micro avg)  0.8913
2023-10-06 22:39:29,578 saving best model
2023-10-06 22:39:31,470 ----------------------------------------------------------------------------------------------------
2023-10-06 22:39:31,472 Loading model from best epoch ...
2023-10-06 22:39:34,130 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-06 22:39:41,345 
Results:
- F-score (micro) 0.8903
- F-score (macro) 0.7282
- Accuracy 0.8175

By class:
              precision    recall  f1-score   support

       scope     0.8798    0.9148    0.8969       176
        pers     0.9302    0.9375    0.9339       128
        work     0.7848    0.8378    0.8105        74
         loc     1.0000    1.0000    1.0000         2
      object     0.0000    0.0000    0.0000         2

   micro avg     0.8779    0.9031    0.8903       382
   macro avg     0.7190    0.7380    0.7282       382
weighted avg     0.8743    0.9031    0.8884       382

2023-10-06 22:39:41,346 ----------------------------------------------------------------------------------------------------