File size: 23,918 Bytes
b641532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-13 09:38:45,457 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Train:  1214 sentences
2023-10-13 09:38:45,458         (train_with_dev=False, train_with_test=False)
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Training Params:
2023-10-13 09:38:45,458  - learning_rate: "3e-05" 
2023-10-13 09:38:45,458  - mini_batch_size: "8"
2023-10-13 09:38:45,458  - max_epochs: "10"
2023-10-13 09:38:45,459  - shuffle: "True"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Plugins:
2023-10-13 09:38:45,459  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:38:45,459  - metric: "('micro avg', 'f1-score')"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Computation:
2023-10-13 09:38:45,459  - compute on device: cuda:0
2023-10-13 09:38:45,459  - embedding storage: none
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:46,317 epoch 1 - iter 15/152 - loss 3.42039858 - time (sec): 0.86 - samples/sec: 3404.00 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:38:47,165 epoch 1 - iter 30/152 - loss 3.16945633 - time (sec): 1.70 - samples/sec: 3585.05 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:38:48,014 epoch 1 - iter 45/152 - loss 2.66696432 - time (sec): 2.55 - samples/sec: 3591.76 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:38:48,844 epoch 1 - iter 60/152 - loss 2.17975677 - time (sec): 3.38 - samples/sec: 3617.27 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:38:49,617 epoch 1 - iter 75/152 - loss 1.90302387 - time (sec): 4.16 - samples/sec: 3608.59 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:38:50,472 epoch 1 - iter 90/152 - loss 1.68392529 - time (sec): 5.01 - samples/sec: 3617.13 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:38:51,320 epoch 1 - iter 105/152 - loss 1.50548696 - time (sec): 5.86 - samples/sec: 3663.47 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:38:52,163 epoch 1 - iter 120/152 - loss 1.36344230 - time (sec): 6.70 - samples/sec: 3633.81 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:38:53,021 epoch 1 - iter 135/152 - loss 1.24394055 - time (sec): 7.56 - samples/sec: 3623.86 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:38:53,913 epoch 1 - iter 150/152 - loss 1.14577441 - time (sec): 8.45 - samples/sec: 3619.01 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:54,019 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:54,019 EPOCH 1 done: loss 1.1329 - lr: 0.000029
2023-10-13 09:38:54,947 DEV : loss 0.2724057137966156 - f1-score (micro avg)  0.5102
2023-10-13 09:38:54,953 saving best model
2023-10-13 09:38:55,334 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:56,202 epoch 2 - iter 15/152 - loss 0.26672296 - time (sec): 0.87 - samples/sec: 3551.23 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:38:57,048 epoch 2 - iter 30/152 - loss 0.24386089 - time (sec): 1.71 - samples/sec: 3603.80 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:57,954 epoch 2 - iter 45/152 - loss 0.23649634 - time (sec): 2.62 - samples/sec: 3467.77 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:58,785 epoch 2 - iter 60/152 - loss 0.22440225 - time (sec): 3.45 - samples/sec: 3509.89 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:59,627 epoch 2 - iter 75/152 - loss 0.20433870 - time (sec): 4.29 - samples/sec: 3531.29 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:00,468 epoch 2 - iter 90/152 - loss 0.19792887 - time (sec): 5.13 - samples/sec: 3565.67 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:01,305 epoch 2 - iter 105/152 - loss 0.19571936 - time (sec): 5.97 - samples/sec: 3609.01 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:02,119 epoch 2 - iter 120/152 - loss 0.19015630 - time (sec): 6.78 - samples/sec: 3599.80 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:02,985 epoch 2 - iter 135/152 - loss 0.17820321 - time (sec): 7.65 - samples/sec: 3610.79 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:03,844 epoch 2 - iter 150/152 - loss 0.17480304 - time (sec): 8.51 - samples/sec: 3610.91 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:03,952 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:03,952 EPOCH 2 done: loss 0.1742 - lr: 0.000027
2023-10-13 09:39:04,944 DEV : loss 0.14681921899318695 - f1-score (micro avg)  0.7847
2023-10-13 09:39:04,951 saving best model
2023-10-13 09:39:05,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:06,290 epoch 3 - iter 15/152 - loss 0.08309311 - time (sec): 0.87 - samples/sec: 3654.07 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:07,190 epoch 3 - iter 30/152 - loss 0.08445615 - time (sec): 1.77 - samples/sec: 3581.28 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:08,100 epoch 3 - iter 45/152 - loss 0.08356708 - time (sec): 2.68 - samples/sec: 3437.01 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:09,006 epoch 3 - iter 60/152 - loss 0.08378525 - time (sec): 3.59 - samples/sec: 3378.19 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:09,891 epoch 3 - iter 75/152 - loss 0.09290886 - time (sec): 4.47 - samples/sec: 3375.02 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:10,833 epoch 3 - iter 90/152 - loss 0.09109264 - time (sec): 5.42 - samples/sec: 3374.63 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:11,706 epoch 3 - iter 105/152 - loss 0.09013940 - time (sec): 6.29 - samples/sec: 3433.31 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:12,580 epoch 3 - iter 120/152 - loss 0.08581588 - time (sec): 7.16 - samples/sec: 3402.88 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:13,427 epoch 3 - iter 135/152 - loss 0.09150916 - time (sec): 8.01 - samples/sec: 3446.20 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:14,322 epoch 3 - iter 150/152 - loss 0.09099483 - time (sec): 8.91 - samples/sec: 3448.19 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:14,418 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:14,418 EPOCH 3 done: loss 0.0905 - lr: 0.000023
2023-10-13 09:39:15,380 DEV : loss 0.13434813916683197 - f1-score (micro avg)  0.8265
2023-10-13 09:39:15,386 saving best model
2023-10-13 09:39:15,902 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:16,735 epoch 4 - iter 15/152 - loss 0.08829873 - time (sec): 0.82 - samples/sec: 4020.27 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:17,568 epoch 4 - iter 30/152 - loss 0.08313918 - time (sec): 1.66 - samples/sec: 3725.43 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:18,464 epoch 4 - iter 45/152 - loss 0.08554648 - time (sec): 2.55 - samples/sec: 3665.02 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:19,288 epoch 4 - iter 60/152 - loss 0.08081654 - time (sec): 3.38 - samples/sec: 3659.32 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:20,096 epoch 4 - iter 75/152 - loss 0.07351109 - time (sec): 4.18 - samples/sec: 3664.35 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:20,935 epoch 4 - iter 90/152 - loss 0.06888951 - time (sec): 5.02 - samples/sec: 3703.82 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:21,772 epoch 4 - iter 105/152 - loss 0.06755660 - time (sec): 5.86 - samples/sec: 3664.70 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:22,628 epoch 4 - iter 120/152 - loss 0.06779828 - time (sec): 6.72 - samples/sec: 3651.94 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:23,449 epoch 4 - iter 135/152 - loss 0.06542532 - time (sec): 7.54 - samples/sec: 3656.96 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:24,301 epoch 4 - iter 150/152 - loss 0.06327155 - time (sec): 8.39 - samples/sec: 3647.39 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:24,420 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:24,420 EPOCH 4 done: loss 0.0626 - lr: 0.000020
2023-10-13 09:39:25,359 DEV : loss 0.14982837438583374 - f1-score (micro avg)  0.8467
2023-10-13 09:39:25,365 saving best model
2023-10-13 09:39:25,900 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:26,831 epoch 5 - iter 15/152 - loss 0.05015278 - time (sec): 0.93 - samples/sec: 3268.25 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:27,659 epoch 5 - iter 30/152 - loss 0.04675951 - time (sec): 1.76 - samples/sec: 3506.32 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:28,495 epoch 5 - iter 45/152 - loss 0.04678507 - time (sec): 2.59 - samples/sec: 3551.35 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:29,296 epoch 5 - iter 60/152 - loss 0.04223145 - time (sec): 3.39 - samples/sec: 3581.63 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:30,132 epoch 5 - iter 75/152 - loss 0.03860938 - time (sec): 4.23 - samples/sec: 3581.73 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:30,969 epoch 5 - iter 90/152 - loss 0.04289756 - time (sec): 5.07 - samples/sec: 3607.66 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:31,797 epoch 5 - iter 105/152 - loss 0.04696796 - time (sec): 5.89 - samples/sec: 3610.86 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:32,628 epoch 5 - iter 120/152 - loss 0.04663757 - time (sec): 6.73 - samples/sec: 3616.98 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:33,497 epoch 5 - iter 135/152 - loss 0.04782612 - time (sec): 7.59 - samples/sec: 3632.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:34,324 epoch 5 - iter 150/152 - loss 0.04654518 - time (sec): 8.42 - samples/sec: 3639.00 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:34,445 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:34,445 EPOCH 5 done: loss 0.0460 - lr: 0.000017
2023-10-13 09:39:35,419 DEV : loss 0.16173015534877777 - f1-score (micro avg)  0.8517
2023-10-13 09:39:35,425 saving best model
2023-10-13 09:39:35,958 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:36,782 epoch 6 - iter 15/152 - loss 0.05787612 - time (sec): 0.82 - samples/sec: 3578.82 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:37,600 epoch 6 - iter 30/152 - loss 0.04226903 - time (sec): 1.64 - samples/sec: 3647.93 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:38,461 epoch 6 - iter 45/152 - loss 0.03419371 - time (sec): 2.50 - samples/sec: 3565.26 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:39,340 epoch 6 - iter 60/152 - loss 0.03279773 - time (sec): 3.38 - samples/sec: 3543.86 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:40,197 epoch 6 - iter 75/152 - loss 0.03556143 - time (sec): 4.24 - samples/sec: 3577.46 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:41,058 epoch 6 - iter 90/152 - loss 0.03362761 - time (sec): 5.10 - samples/sec: 3569.62 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:41,915 epoch 6 - iter 105/152 - loss 0.03321623 - time (sec): 5.96 - samples/sec: 3604.36 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:42,783 epoch 6 - iter 120/152 - loss 0.03458796 - time (sec): 6.82 - samples/sec: 3581.45 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:43,679 epoch 6 - iter 135/152 - loss 0.03512774 - time (sec): 7.72 - samples/sec: 3567.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:44,617 epoch 6 - iter 150/152 - loss 0.03640818 - time (sec): 8.66 - samples/sec: 3550.36 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:44,737 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:44,737 EPOCH 6 done: loss 0.0362 - lr: 0.000013
2023-10-13 09:39:45,738 DEV : loss 0.17967215180397034 - f1-score (micro avg)  0.8357
2023-10-13 09:39:45,747 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:46,642 epoch 7 - iter 15/152 - loss 0.02708283 - time (sec): 0.89 - samples/sec: 3370.29 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:47,591 epoch 7 - iter 30/152 - loss 0.01696927 - time (sec): 1.84 - samples/sec: 3295.33 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:48,515 epoch 7 - iter 45/152 - loss 0.01916225 - time (sec): 2.77 - samples/sec: 3249.69 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:49,428 epoch 7 - iter 60/152 - loss 0.02226671 - time (sec): 3.68 - samples/sec: 3260.09 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:50,360 epoch 7 - iter 75/152 - loss 0.02113811 - time (sec): 4.61 - samples/sec: 3294.64 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:51,290 epoch 7 - iter 90/152 - loss 0.02114491 - time (sec): 5.54 - samples/sec: 3301.77 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:52,210 epoch 7 - iter 105/152 - loss 0.02269103 - time (sec): 6.46 - samples/sec: 3337.71 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:53,087 epoch 7 - iter 120/152 - loss 0.02681876 - time (sec): 7.34 - samples/sec: 3353.87 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:53,940 epoch 7 - iter 135/152 - loss 0.02578900 - time (sec): 8.19 - samples/sec: 3373.66 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:54,763 epoch 7 - iter 150/152 - loss 0.02692004 - time (sec): 9.01 - samples/sec: 3393.20 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:54,872 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:54,872 EPOCH 7 done: loss 0.0279 - lr: 0.000010
2023-10-13 09:39:55,846 DEV : loss 0.17587348818778992 - f1-score (micro avg)  0.8578
2023-10-13 09:39:55,856 saving best model
2023-10-13 09:39:56,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:57,308 epoch 8 - iter 15/152 - loss 0.00929224 - time (sec): 0.89 - samples/sec: 3390.65 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:58,199 epoch 8 - iter 30/152 - loss 0.01942479 - time (sec): 1.78 - samples/sec: 3496.14 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:39:59,113 epoch 8 - iter 45/152 - loss 0.02860277 - time (sec): 2.70 - samples/sec: 3418.84 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:40:00,029 epoch 8 - iter 60/152 - loss 0.02366104 - time (sec): 3.61 - samples/sec: 3382.91 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:40:01,282 epoch 8 - iter 75/152 - loss 0.02506110 - time (sec): 4.87 - samples/sec: 3182.13 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:02,159 epoch 8 - iter 90/152 - loss 0.02244323 - time (sec): 5.74 - samples/sec: 3219.10 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:03,087 epoch 8 - iter 105/152 - loss 0.01991333 - time (sec): 6.67 - samples/sec: 3198.93 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:03,961 epoch 8 - iter 120/152 - loss 0.01927426 - time (sec): 7.55 - samples/sec: 3222.51 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:04,849 epoch 8 - iter 135/152 - loss 0.02106969 - time (sec): 8.43 - samples/sec: 3245.87 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:05,727 epoch 8 - iter 150/152 - loss 0.02042280 - time (sec): 9.31 - samples/sec: 3285.49 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:05,838 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:05,838 EPOCH 8 done: loss 0.0208 - lr: 0.000007
2023-10-13 09:40:06,788 DEV : loss 0.1839696615934372 - f1-score (micro avg)  0.8314
2023-10-13 09:40:06,795 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:07,588 epoch 9 - iter 15/152 - loss 0.01914733 - time (sec): 0.79 - samples/sec: 3519.45 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:08,428 epoch 9 - iter 30/152 - loss 0.01898946 - time (sec): 1.63 - samples/sec: 3581.06 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:09,308 epoch 9 - iter 45/152 - loss 0.01957067 - time (sec): 2.51 - samples/sec: 3656.80 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:10,079 epoch 9 - iter 60/152 - loss 0.02357565 - time (sec): 3.28 - samples/sec: 3613.09 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:10,909 epoch 9 - iter 75/152 - loss 0.02351370 - time (sec): 4.11 - samples/sec: 3597.67 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:11,781 epoch 9 - iter 90/152 - loss 0.02277609 - time (sec): 4.98 - samples/sec: 3631.28 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:12,645 epoch 9 - iter 105/152 - loss 0.02045437 - time (sec): 5.85 - samples/sec: 3684.14 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:13,459 epoch 9 - iter 120/152 - loss 0.01842170 - time (sec): 6.66 - samples/sec: 3667.39 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:14,276 epoch 9 - iter 135/152 - loss 0.01671679 - time (sec): 7.48 - samples/sec: 3679.89 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:15,167 epoch 9 - iter 150/152 - loss 0.01739569 - time (sec): 8.37 - samples/sec: 3660.04 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:15,270 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:15,270 EPOCH 9 done: loss 0.0172 - lr: 0.000004
2023-10-13 09:40:16,265 DEV : loss 0.1881193369626999 - f1-score (micro avg)  0.8551
2023-10-13 09:40:16,272 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:17,186 epoch 10 - iter 15/152 - loss 0.00395892 - time (sec): 0.91 - samples/sec: 3317.23 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:40:18,087 epoch 10 - iter 30/152 - loss 0.00446924 - time (sec): 1.81 - samples/sec: 3255.88 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:40:18,942 epoch 10 - iter 45/152 - loss 0.00768769 - time (sec): 2.67 - samples/sec: 3275.31 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:19,876 epoch 10 - iter 60/152 - loss 0.00679437 - time (sec): 3.60 - samples/sec: 3294.41 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:20,763 epoch 10 - iter 75/152 - loss 0.01237748 - time (sec): 4.49 - samples/sec: 3349.85 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:21,713 epoch 10 - iter 90/152 - loss 0.01043566 - time (sec): 5.44 - samples/sec: 3372.04 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:22,637 epoch 10 - iter 105/152 - loss 0.01088903 - time (sec): 6.36 - samples/sec: 3355.91 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:23,545 epoch 10 - iter 120/152 - loss 0.01417993 - time (sec): 7.27 - samples/sec: 3350.91 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:24,459 epoch 10 - iter 135/152 - loss 0.01419198 - time (sec): 8.19 - samples/sec: 3331.40 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:25,435 epoch 10 - iter 150/152 - loss 0.01387484 - time (sec): 9.16 - samples/sec: 3344.38 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:40:25,550 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:25,550 EPOCH 10 done: loss 0.0137 - lr: 0.000000
2023-10-13 09:40:26,517 DEV : loss 0.1888277232646942 - f1-score (micro avg)  0.8571
2023-10-13 09:40:26,973 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:26,975 Loading model from best epoch ...
2023-10-13 09:40:28,555 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:40:29,750 
Results:
- F-score (micro) 0.7839
- F-score (macro) 0.6335
- Accuracy 0.6503

By class:
              precision    recall  f1-score   support

       scope     0.7547    0.7947    0.7742       151
        work     0.6860    0.8737    0.7685        95
        pers     0.7565    0.9062    0.8246        96
         loc     1.0000    0.6667    0.8000         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7355    0.8391    0.7839       348
   macro avg     0.6394    0.6483    0.6335       348
weighted avg     0.7321    0.8391    0.7801       348

2023-10-13 09:40:29,750 ----------------------------------------------------------------------------------------------------