File size: 23,918 Bytes
b641532 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
2023-10-13 09:38:45,457 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 MultiCorpus: 1214 train + 266 dev + 251 test sentences
- NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Train: 1214 sentences
2023-10-13 09:38:45,458 (train_with_dev=False, train_with_test=False)
2023-10-13 09:38:45,458 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,458 Training Params:
2023-10-13 09:38:45,458 - learning_rate: "3e-05"
2023-10-13 09:38:45,458 - mini_batch_size: "8"
2023-10-13 09:38:45,458 - max_epochs: "10"
2023-10-13 09:38:45,459 - shuffle: "True"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Plugins:
2023-10-13 09:38:45,459 - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 09:38:45,459 - metric: "('micro avg', 'f1-score')"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Computation:
2023-10-13 09:38:45,459 - compute on device: cuda:0
2023-10-13 09:38:45,459 - embedding storage: none
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:45,459 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:46,317 epoch 1 - iter 15/152 - loss 3.42039858 - time (sec): 0.86 - samples/sec: 3404.00 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:38:47,165 epoch 1 - iter 30/152 - loss 3.16945633 - time (sec): 1.70 - samples/sec: 3585.05 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:38:48,014 epoch 1 - iter 45/152 - loss 2.66696432 - time (sec): 2.55 - samples/sec: 3591.76 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:38:48,844 epoch 1 - iter 60/152 - loss 2.17975677 - time (sec): 3.38 - samples/sec: 3617.27 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:38:49,617 epoch 1 - iter 75/152 - loss 1.90302387 - time (sec): 4.16 - samples/sec: 3608.59 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:38:50,472 epoch 1 - iter 90/152 - loss 1.68392529 - time (sec): 5.01 - samples/sec: 3617.13 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:38:51,320 epoch 1 - iter 105/152 - loss 1.50548696 - time (sec): 5.86 - samples/sec: 3663.47 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:38:52,163 epoch 1 - iter 120/152 - loss 1.36344230 - time (sec): 6.70 - samples/sec: 3633.81 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:38:53,021 epoch 1 - iter 135/152 - loss 1.24394055 - time (sec): 7.56 - samples/sec: 3623.86 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:38:53,913 epoch 1 - iter 150/152 - loss 1.14577441 - time (sec): 8.45 - samples/sec: 3619.01 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:54,019 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:54,019 EPOCH 1 done: loss 1.1329 - lr: 0.000029
2023-10-13 09:38:54,947 DEV : loss 0.2724057137966156 - f1-score (micro avg) 0.5102
2023-10-13 09:38:54,953 saving best model
2023-10-13 09:38:55,334 ----------------------------------------------------------------------------------------------------
2023-10-13 09:38:56,202 epoch 2 - iter 15/152 - loss 0.26672296 - time (sec): 0.87 - samples/sec: 3551.23 - lr: 0.000030 - momentum: 0.000000
2023-10-13 09:38:57,048 epoch 2 - iter 30/152 - loss 0.24386089 - time (sec): 1.71 - samples/sec: 3603.80 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:57,954 epoch 2 - iter 45/152 - loss 0.23649634 - time (sec): 2.62 - samples/sec: 3467.77 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:58,785 epoch 2 - iter 60/152 - loss 0.22440225 - time (sec): 3.45 - samples/sec: 3509.89 - lr: 0.000029 - momentum: 0.000000
2023-10-13 09:38:59,627 epoch 2 - iter 75/152 - loss 0.20433870 - time (sec): 4.29 - samples/sec: 3531.29 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:00,468 epoch 2 - iter 90/152 - loss 0.19792887 - time (sec): 5.13 - samples/sec: 3565.67 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:01,305 epoch 2 - iter 105/152 - loss 0.19571936 - time (sec): 5.97 - samples/sec: 3609.01 - lr: 0.000028 - momentum: 0.000000
2023-10-13 09:39:02,119 epoch 2 - iter 120/152 - loss 0.19015630 - time (sec): 6.78 - samples/sec: 3599.80 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:02,985 epoch 2 - iter 135/152 - loss 0.17820321 - time (sec): 7.65 - samples/sec: 3610.79 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:03,844 epoch 2 - iter 150/152 - loss 0.17480304 - time (sec): 8.51 - samples/sec: 3610.91 - lr: 0.000027 - momentum: 0.000000
2023-10-13 09:39:03,952 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:03,952 EPOCH 2 done: loss 0.1742 - lr: 0.000027
2023-10-13 09:39:04,944 DEV : loss 0.14681921899318695 - f1-score (micro avg) 0.7847
2023-10-13 09:39:04,951 saving best model
2023-10-13 09:39:05,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:06,290 epoch 3 - iter 15/152 - loss 0.08309311 - time (sec): 0.87 - samples/sec: 3654.07 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:07,190 epoch 3 - iter 30/152 - loss 0.08445615 - time (sec): 1.77 - samples/sec: 3581.28 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:08,100 epoch 3 - iter 45/152 - loss 0.08356708 - time (sec): 2.68 - samples/sec: 3437.01 - lr: 0.000026 - momentum: 0.000000
2023-10-13 09:39:09,006 epoch 3 - iter 60/152 - loss 0.08378525 - time (sec): 3.59 - samples/sec: 3378.19 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:09,891 epoch 3 - iter 75/152 - loss 0.09290886 - time (sec): 4.47 - samples/sec: 3375.02 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:10,833 epoch 3 - iter 90/152 - loss 0.09109264 - time (sec): 5.42 - samples/sec: 3374.63 - lr: 0.000025 - momentum: 0.000000
2023-10-13 09:39:11,706 epoch 3 - iter 105/152 - loss 0.09013940 - time (sec): 6.29 - samples/sec: 3433.31 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:12,580 epoch 3 - iter 120/152 - loss 0.08581588 - time (sec): 7.16 - samples/sec: 3402.88 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:13,427 epoch 3 - iter 135/152 - loss 0.09150916 - time (sec): 8.01 - samples/sec: 3446.20 - lr: 0.000024 - momentum: 0.000000
2023-10-13 09:39:14,322 epoch 3 - iter 150/152 - loss 0.09099483 - time (sec): 8.91 - samples/sec: 3448.19 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:14,418 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:14,418 EPOCH 3 done: loss 0.0905 - lr: 0.000023
2023-10-13 09:39:15,380 DEV : loss 0.13434813916683197 - f1-score (micro avg) 0.8265
2023-10-13 09:39:15,386 saving best model
2023-10-13 09:39:15,902 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:16,735 epoch 4 - iter 15/152 - loss 0.08829873 - time (sec): 0.82 - samples/sec: 4020.27 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:17,568 epoch 4 - iter 30/152 - loss 0.08313918 - time (sec): 1.66 - samples/sec: 3725.43 - lr: 0.000023 - momentum: 0.000000
2023-10-13 09:39:18,464 epoch 4 - iter 45/152 - loss 0.08554648 - time (sec): 2.55 - samples/sec: 3665.02 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:19,288 epoch 4 - iter 60/152 - loss 0.08081654 - time (sec): 3.38 - samples/sec: 3659.32 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:20,096 epoch 4 - iter 75/152 - loss 0.07351109 - time (sec): 4.18 - samples/sec: 3664.35 - lr: 0.000022 - momentum: 0.000000
2023-10-13 09:39:20,935 epoch 4 - iter 90/152 - loss 0.06888951 - time (sec): 5.02 - samples/sec: 3703.82 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:21,772 epoch 4 - iter 105/152 - loss 0.06755660 - time (sec): 5.86 - samples/sec: 3664.70 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:22,628 epoch 4 - iter 120/152 - loss 0.06779828 - time (sec): 6.72 - samples/sec: 3651.94 - lr: 0.000021 - momentum: 0.000000
2023-10-13 09:39:23,449 epoch 4 - iter 135/152 - loss 0.06542532 - time (sec): 7.54 - samples/sec: 3656.96 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:24,301 epoch 4 - iter 150/152 - loss 0.06327155 - time (sec): 8.39 - samples/sec: 3647.39 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:24,420 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:24,420 EPOCH 4 done: loss 0.0626 - lr: 0.000020
2023-10-13 09:39:25,359 DEV : loss 0.14982837438583374 - f1-score (micro avg) 0.8467
2023-10-13 09:39:25,365 saving best model
2023-10-13 09:39:25,900 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:26,831 epoch 5 - iter 15/152 - loss 0.05015278 - time (sec): 0.93 - samples/sec: 3268.25 - lr: 0.000020 - momentum: 0.000000
2023-10-13 09:39:27,659 epoch 5 - iter 30/152 - loss 0.04675951 - time (sec): 1.76 - samples/sec: 3506.32 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:28,495 epoch 5 - iter 45/152 - loss 0.04678507 - time (sec): 2.59 - samples/sec: 3551.35 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:29,296 epoch 5 - iter 60/152 - loss 0.04223145 - time (sec): 3.39 - samples/sec: 3581.63 - lr: 0.000019 - momentum: 0.000000
2023-10-13 09:39:30,132 epoch 5 - iter 75/152 - loss 0.03860938 - time (sec): 4.23 - samples/sec: 3581.73 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:30,969 epoch 5 - iter 90/152 - loss 0.04289756 - time (sec): 5.07 - samples/sec: 3607.66 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:31,797 epoch 5 - iter 105/152 - loss 0.04696796 - time (sec): 5.89 - samples/sec: 3610.86 - lr: 0.000018 - momentum: 0.000000
2023-10-13 09:39:32,628 epoch 5 - iter 120/152 - loss 0.04663757 - time (sec): 6.73 - samples/sec: 3616.98 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:33,497 epoch 5 - iter 135/152 - loss 0.04782612 - time (sec): 7.59 - samples/sec: 3632.63 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:34,324 epoch 5 - iter 150/152 - loss 0.04654518 - time (sec): 8.42 - samples/sec: 3639.00 - lr: 0.000017 - momentum: 0.000000
2023-10-13 09:39:34,445 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:34,445 EPOCH 5 done: loss 0.0460 - lr: 0.000017
2023-10-13 09:39:35,419 DEV : loss 0.16173015534877777 - f1-score (micro avg) 0.8517
2023-10-13 09:39:35,425 saving best model
2023-10-13 09:39:35,958 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:36,782 epoch 6 - iter 15/152 - loss 0.05787612 - time (sec): 0.82 - samples/sec: 3578.82 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:37,600 epoch 6 - iter 30/152 - loss 0.04226903 - time (sec): 1.64 - samples/sec: 3647.93 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:38,461 epoch 6 - iter 45/152 - loss 0.03419371 - time (sec): 2.50 - samples/sec: 3565.26 - lr: 0.000016 - momentum: 0.000000
2023-10-13 09:39:39,340 epoch 6 - iter 60/152 - loss 0.03279773 - time (sec): 3.38 - samples/sec: 3543.86 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:40,197 epoch 6 - iter 75/152 - loss 0.03556143 - time (sec): 4.24 - samples/sec: 3577.46 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:41,058 epoch 6 - iter 90/152 - loss 0.03362761 - time (sec): 5.10 - samples/sec: 3569.62 - lr: 0.000015 - momentum: 0.000000
2023-10-13 09:39:41,915 epoch 6 - iter 105/152 - loss 0.03321623 - time (sec): 5.96 - samples/sec: 3604.36 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:42,783 epoch 6 - iter 120/152 - loss 0.03458796 - time (sec): 6.82 - samples/sec: 3581.45 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:43,679 epoch 6 - iter 135/152 - loss 0.03512774 - time (sec): 7.72 - samples/sec: 3567.76 - lr: 0.000014 - momentum: 0.000000
2023-10-13 09:39:44,617 epoch 6 - iter 150/152 - loss 0.03640818 - time (sec): 8.66 - samples/sec: 3550.36 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:44,737 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:44,737 EPOCH 6 done: loss 0.0362 - lr: 0.000013
2023-10-13 09:39:45,738 DEV : loss 0.17967215180397034 - f1-score (micro avg) 0.8357
2023-10-13 09:39:45,747 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:46,642 epoch 7 - iter 15/152 - loss 0.02708283 - time (sec): 0.89 - samples/sec: 3370.29 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:47,591 epoch 7 - iter 30/152 - loss 0.01696927 - time (sec): 1.84 - samples/sec: 3295.33 - lr: 0.000013 - momentum: 0.000000
2023-10-13 09:39:48,515 epoch 7 - iter 45/152 - loss 0.01916225 - time (sec): 2.77 - samples/sec: 3249.69 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:49,428 epoch 7 - iter 60/152 - loss 0.02226671 - time (sec): 3.68 - samples/sec: 3260.09 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:50,360 epoch 7 - iter 75/152 - loss 0.02113811 - time (sec): 4.61 - samples/sec: 3294.64 - lr: 0.000012 - momentum: 0.000000
2023-10-13 09:39:51,290 epoch 7 - iter 90/152 - loss 0.02114491 - time (sec): 5.54 - samples/sec: 3301.77 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:52,210 epoch 7 - iter 105/152 - loss 0.02269103 - time (sec): 6.46 - samples/sec: 3337.71 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:53,087 epoch 7 - iter 120/152 - loss 0.02681876 - time (sec): 7.34 - samples/sec: 3353.87 - lr: 0.000011 - momentum: 0.000000
2023-10-13 09:39:53,940 epoch 7 - iter 135/152 - loss 0.02578900 - time (sec): 8.19 - samples/sec: 3373.66 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:54,763 epoch 7 - iter 150/152 - loss 0.02692004 - time (sec): 9.01 - samples/sec: 3393.20 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:54,872 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:54,872 EPOCH 7 done: loss 0.0279 - lr: 0.000010
2023-10-13 09:39:55,846 DEV : loss 0.17587348818778992 - f1-score (micro avg) 0.8578
2023-10-13 09:39:55,856 saving best model
2023-10-13 09:39:56,414 ----------------------------------------------------------------------------------------------------
2023-10-13 09:39:57,308 epoch 8 - iter 15/152 - loss 0.00929224 - time (sec): 0.89 - samples/sec: 3390.65 - lr: 0.000010 - momentum: 0.000000
2023-10-13 09:39:58,199 epoch 8 - iter 30/152 - loss 0.01942479 - time (sec): 1.78 - samples/sec: 3496.14 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:39:59,113 epoch 8 - iter 45/152 - loss 0.02860277 - time (sec): 2.70 - samples/sec: 3418.84 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:40:00,029 epoch 8 - iter 60/152 - loss 0.02366104 - time (sec): 3.61 - samples/sec: 3382.91 - lr: 0.000009 - momentum: 0.000000
2023-10-13 09:40:01,282 epoch 8 - iter 75/152 - loss 0.02506110 - time (sec): 4.87 - samples/sec: 3182.13 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:02,159 epoch 8 - iter 90/152 - loss 0.02244323 - time (sec): 5.74 - samples/sec: 3219.10 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:03,087 epoch 8 - iter 105/152 - loss 0.01991333 - time (sec): 6.67 - samples/sec: 3198.93 - lr: 0.000008 - momentum: 0.000000
2023-10-13 09:40:03,961 epoch 8 - iter 120/152 - loss 0.01927426 - time (sec): 7.55 - samples/sec: 3222.51 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:04,849 epoch 8 - iter 135/152 - loss 0.02106969 - time (sec): 8.43 - samples/sec: 3245.87 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:05,727 epoch 8 - iter 150/152 - loss 0.02042280 - time (sec): 9.31 - samples/sec: 3285.49 - lr: 0.000007 - momentum: 0.000000
2023-10-13 09:40:05,838 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:05,838 EPOCH 8 done: loss 0.0208 - lr: 0.000007
2023-10-13 09:40:06,788 DEV : loss 0.1839696615934372 - f1-score (micro avg) 0.8314
2023-10-13 09:40:06,795 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:07,588 epoch 9 - iter 15/152 - loss 0.01914733 - time (sec): 0.79 - samples/sec: 3519.45 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:08,428 epoch 9 - iter 30/152 - loss 0.01898946 - time (sec): 1.63 - samples/sec: 3581.06 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:09,308 epoch 9 - iter 45/152 - loss 0.01957067 - time (sec): 2.51 - samples/sec: 3656.80 - lr: 0.000006 - momentum: 0.000000
2023-10-13 09:40:10,079 epoch 9 - iter 60/152 - loss 0.02357565 - time (sec): 3.28 - samples/sec: 3613.09 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:10,909 epoch 9 - iter 75/152 - loss 0.02351370 - time (sec): 4.11 - samples/sec: 3597.67 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:11,781 epoch 9 - iter 90/152 - loss 0.02277609 - time (sec): 4.98 - samples/sec: 3631.28 - lr: 0.000005 - momentum: 0.000000
2023-10-13 09:40:12,645 epoch 9 - iter 105/152 - loss 0.02045437 - time (sec): 5.85 - samples/sec: 3684.14 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:13,459 epoch 9 - iter 120/152 - loss 0.01842170 - time (sec): 6.66 - samples/sec: 3667.39 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:14,276 epoch 9 - iter 135/152 - loss 0.01671679 - time (sec): 7.48 - samples/sec: 3679.89 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:15,167 epoch 9 - iter 150/152 - loss 0.01739569 - time (sec): 8.37 - samples/sec: 3660.04 - lr: 0.000004 - momentum: 0.000000
2023-10-13 09:40:15,270 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:15,270 EPOCH 9 done: loss 0.0172 - lr: 0.000004
2023-10-13 09:40:16,265 DEV : loss 0.1881193369626999 - f1-score (micro avg) 0.8551
2023-10-13 09:40:16,272 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:17,186 epoch 10 - iter 15/152 - loss 0.00395892 - time (sec): 0.91 - samples/sec: 3317.23 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:40:18,087 epoch 10 - iter 30/152 - loss 0.00446924 - time (sec): 1.81 - samples/sec: 3255.88 - lr: 0.000003 - momentum: 0.000000
2023-10-13 09:40:18,942 epoch 10 - iter 45/152 - loss 0.00768769 - time (sec): 2.67 - samples/sec: 3275.31 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:19,876 epoch 10 - iter 60/152 - loss 0.00679437 - time (sec): 3.60 - samples/sec: 3294.41 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:20,763 epoch 10 - iter 75/152 - loss 0.01237748 - time (sec): 4.49 - samples/sec: 3349.85 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:21,713 epoch 10 - iter 90/152 - loss 0.01043566 - time (sec): 5.44 - samples/sec: 3372.04 - lr: 0.000002 - momentum: 0.000000
2023-10-13 09:40:22,637 epoch 10 - iter 105/152 - loss 0.01088903 - time (sec): 6.36 - samples/sec: 3355.91 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:23,545 epoch 10 - iter 120/152 - loss 0.01417993 - time (sec): 7.27 - samples/sec: 3350.91 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:24,459 epoch 10 - iter 135/152 - loss 0.01419198 - time (sec): 8.19 - samples/sec: 3331.40 - lr: 0.000001 - momentum: 0.000000
2023-10-13 09:40:25,435 epoch 10 - iter 150/152 - loss 0.01387484 - time (sec): 9.16 - samples/sec: 3344.38 - lr: 0.000000 - momentum: 0.000000
2023-10-13 09:40:25,550 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:25,550 EPOCH 10 done: loss 0.0137 - lr: 0.000000
2023-10-13 09:40:26,517 DEV : loss 0.1888277232646942 - f1-score (micro avg) 0.8571
2023-10-13 09:40:26,973 ----------------------------------------------------------------------------------------------------
2023-10-13 09:40:26,975 Loading model from best epoch ...
2023-10-13 09:40:28,555 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-13 09:40:29,750
Results:
- F-score (micro) 0.7839
- F-score (macro) 0.6335
- Accuracy 0.6503
By class:
precision recall f1-score support
scope 0.7547 0.7947 0.7742 151
work 0.6860 0.8737 0.7685 95
pers 0.7565 0.9062 0.8246 96
loc 1.0000 0.6667 0.8000 3
date 0.0000 0.0000 0.0000 3
micro avg 0.7355 0.8391 0.7839 348
macro avg 0.6394 0.6483 0.6335 348
weighted avg 0.7321 0.8391 0.7801 348
2023-10-13 09:40:29,750 ----------------------------------------------------------------------------------------------------
|