File size: 24,157 Bytes
0faafe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 128)
        (position_embeddings): Embedding(512, 128)
        (token_type_embeddings): Embedding(2, 128)
        (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-1): 2 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=128, out_features=128, bias=True)
                (key): Linear(in_features=128, out_features=128, bias=True)
                (value): Linear(in_features=128, out_features=128, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=128, out_features=128, bias=True)
                (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=128, out_features=512, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=512, out_features=128, bias=True)
              (LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=128, out_features=128, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=128, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Train:  966 sentences
2023-10-18 16:39:12,200         (train_with_dev=False, train_with_test=False)
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Training Params:
2023-10-18 16:39:12,200  - learning_rate: "5e-05" 
2023-10-18 16:39:12,200  - mini_batch_size: "4"
2023-10-18 16:39:12,201  - max_epochs: "10"
2023-10-18 16:39:12,201  - shuffle: "True"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Plugins:
2023-10-18 16:39:12,201  - TensorboardLogger
2023-10-18 16:39:12,201  - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:39:12,201  - metric: "('micro avg', 'f1-score')"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Computation:
2023-10-18 16:39:12,201  - compute on device: cuda:0
2023-10-18 16:39:12,201  - embedding storage: none
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:39:12,666 epoch 1 - iter 24/242 - loss 3.34072656 - time (sec): 0.46 - samples/sec: 5198.93 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:13,105 epoch 1 - iter 48/242 - loss 3.26591753 - time (sec): 0.90 - samples/sec: 5222.64 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:13,577 epoch 1 - iter 72/242 - loss 3.15898740 - time (sec): 1.38 - samples/sec: 5196.43 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:13,988 epoch 1 - iter 96/242 - loss 2.98050313 - time (sec): 1.79 - samples/sec: 5272.31 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:14,398 epoch 1 - iter 120/242 - loss 2.73215890 - time (sec): 2.20 - samples/sec: 5626.62 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:14,785 epoch 1 - iter 144/242 - loss 2.47482205 - time (sec): 2.58 - samples/sec: 5885.59 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:15,168 epoch 1 - iter 168/242 - loss 2.27234750 - time (sec): 2.97 - samples/sec: 5932.36 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:15,546 epoch 1 - iter 192/242 - loss 2.08230281 - time (sec): 3.34 - samples/sec: 6041.97 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:39:15,914 epoch 1 - iter 216/242 - loss 1.93805523 - time (sec): 3.71 - samples/sec: 6037.75 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:39:16,289 epoch 1 - iter 240/242 - loss 1.83328931 - time (sec): 4.09 - samples/sec: 6023.32 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:16,316 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:16,316 EPOCH 1 done: loss 1.8276 - lr: 0.000049
2023-10-18 16:39:16,587 DEV : loss 0.6149806380271912 - f1-score (micro avg)  0.0
2023-10-18 16:39:16,591 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:16,960 epoch 2 - iter 24/242 - loss 0.63637611 - time (sec): 0.37 - samples/sec: 6301.48 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:17,332 epoch 2 - iter 48/242 - loss 0.63515292 - time (sec): 0.74 - samples/sec: 6569.69 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:17,705 epoch 2 - iter 72/242 - loss 0.60643911 - time (sec): 1.11 - samples/sec: 6697.20 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:39:18,097 epoch 2 - iter 96/242 - loss 0.63024893 - time (sec): 1.50 - samples/sec: 6649.95 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:39:18,489 epoch 2 - iter 120/242 - loss 0.62899928 - time (sec): 1.90 - samples/sec: 6615.47 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:39:18,855 epoch 2 - iter 144/242 - loss 0.61009483 - time (sec): 2.26 - samples/sec: 6651.46 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:39:19,223 epoch 2 - iter 168/242 - loss 0.59249093 - time (sec): 2.63 - samples/sec: 6624.33 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:39:19,591 epoch 2 - iter 192/242 - loss 0.57656336 - time (sec): 3.00 - samples/sec: 6541.42 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:39:19,962 epoch 2 - iter 216/242 - loss 0.56723500 - time (sec): 3.37 - samples/sec: 6543.31 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:39:20,343 epoch 2 - iter 240/242 - loss 0.56412615 - time (sec): 3.75 - samples/sec: 6561.27 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:39:20,370 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:20,370 EPOCH 2 done: loss 0.5645 - lr: 0.000045
2023-10-18 16:39:20,800 DEV : loss 0.4076858460903168 - f1-score (micro avg)  0.4069
2023-10-18 16:39:20,804 saving best model
2023-10-18 16:39:20,839 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:21,219 epoch 3 - iter 24/242 - loss 0.44950477 - time (sec): 0.38 - samples/sec: 6957.07 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:39:21,590 epoch 3 - iter 48/242 - loss 0.46441966 - time (sec): 0.75 - samples/sec: 6757.35 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:39:21,986 epoch 3 - iter 72/242 - loss 0.48355561 - time (sec): 1.15 - samples/sec: 6834.81 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:39:22,344 epoch 3 - iter 96/242 - loss 0.48599707 - time (sec): 1.50 - samples/sec: 6618.72 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:39:22,700 epoch 3 - iter 120/242 - loss 0.48366048 - time (sec): 1.86 - samples/sec: 6597.14 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:39:23,032 epoch 3 - iter 144/242 - loss 0.46809598 - time (sec): 2.19 - samples/sec: 6783.65 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:39:23,379 epoch 3 - iter 168/242 - loss 0.46574184 - time (sec): 2.54 - samples/sec: 6809.11 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:39:23,763 epoch 3 - iter 192/242 - loss 0.44190262 - time (sec): 2.92 - samples/sec: 6824.99 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:39:24,141 epoch 3 - iter 216/242 - loss 0.43496200 - time (sec): 3.30 - samples/sec: 6751.17 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:39:24,503 epoch 3 - iter 240/242 - loss 0.42851370 - time (sec): 3.66 - samples/sec: 6729.96 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:39:24,529 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:24,529 EPOCH 3 done: loss 0.4294 - lr: 0.000039
2023-10-18 16:39:25,096 DEV : loss 0.32929080724716187 - f1-score (micro avg)  0.4931
2023-10-18 16:39:25,100 saving best model
2023-10-18 16:39:25,136 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:25,519 epoch 4 - iter 24/242 - loss 0.49055937 - time (sec): 0.38 - samples/sec: 6751.48 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:39:25,890 epoch 4 - iter 48/242 - loss 0.41222060 - time (sec): 0.75 - samples/sec: 6915.77 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:39:26,278 epoch 4 - iter 72/242 - loss 0.40643787 - time (sec): 1.14 - samples/sec: 6695.47 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:39:26,651 epoch 4 - iter 96/242 - loss 0.38427024 - time (sec): 1.51 - samples/sec: 6482.55 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:39:27,044 epoch 4 - iter 120/242 - loss 0.38029072 - time (sec): 1.91 - samples/sec: 6525.11 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:39:27,411 epoch 4 - iter 144/242 - loss 0.36912080 - time (sec): 2.27 - samples/sec: 6502.47 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:39:27,785 epoch 4 - iter 168/242 - loss 0.36034886 - time (sec): 2.65 - samples/sec: 6431.46 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:28,163 epoch 4 - iter 192/242 - loss 0.36068588 - time (sec): 3.03 - samples/sec: 6403.71 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:28,539 epoch 4 - iter 216/242 - loss 0.36250961 - time (sec): 3.40 - samples/sec: 6473.68 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:39:28,915 epoch 4 - iter 240/242 - loss 0.36148176 - time (sec): 3.78 - samples/sec: 6516.27 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:39:28,942 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:28,942 EPOCH 4 done: loss 0.3605 - lr: 0.000033
2023-10-18 16:39:29,376 DEV : loss 0.29638388752937317 - f1-score (micro avg)  0.4934
2023-10-18 16:39:29,380 saving best model
2023-10-18 16:39:29,415 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:29,790 epoch 5 - iter 24/242 - loss 0.33638521 - time (sec): 0.37 - samples/sec: 6839.32 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:39:30,161 epoch 5 - iter 48/242 - loss 0.32890594 - time (sec): 0.75 - samples/sec: 6941.91 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:39:30,526 epoch 5 - iter 72/242 - loss 0.30964898 - time (sec): 1.11 - samples/sec: 6746.25 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:39:30,897 epoch 5 - iter 96/242 - loss 0.31626763 - time (sec): 1.48 - samples/sec: 6659.49 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:39:31,267 epoch 5 - iter 120/242 - loss 0.33297265 - time (sec): 1.85 - samples/sec: 6735.79 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:39:31,634 epoch 5 - iter 144/242 - loss 0.33145979 - time (sec): 2.22 - samples/sec: 6650.67 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:32,007 epoch 5 - iter 168/242 - loss 0.33311663 - time (sec): 2.59 - samples/sec: 6659.52 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:32,382 epoch 5 - iter 192/242 - loss 0.32948726 - time (sec): 2.97 - samples/sec: 6574.73 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:39:32,767 epoch 5 - iter 216/242 - loss 0.32772837 - time (sec): 3.35 - samples/sec: 6557.20 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:39:33,116 epoch 5 - iter 240/242 - loss 0.32800025 - time (sec): 3.70 - samples/sec: 6633.02 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:39:33,140 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:33,140 EPOCH 5 done: loss 0.3270 - lr: 0.000028
2023-10-18 16:39:33,590 DEV : loss 0.2624404728412628 - f1-score (micro avg)  0.5279
2023-10-18 16:39:33,596 saving best model
2023-10-18 16:39:33,628 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:33,950 epoch 6 - iter 24/242 - loss 0.34206753 - time (sec): 0.32 - samples/sec: 6258.48 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:39:34,240 epoch 6 - iter 48/242 - loss 0.34319052 - time (sec): 0.61 - samples/sec: 7246.90 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:39:34,530 epoch 6 - iter 72/242 - loss 0.31813508 - time (sec): 0.90 - samples/sec: 7666.92 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:39:34,822 epoch 6 - iter 96/242 - loss 0.30359291 - time (sec): 1.19 - samples/sec: 8008.47 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:39:35,119 epoch 6 - iter 120/242 - loss 0.32660567 - time (sec): 1.49 - samples/sec: 8158.46 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:35,412 epoch 6 - iter 144/242 - loss 0.33032778 - time (sec): 1.78 - samples/sec: 8169.00 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:35,719 epoch 6 - iter 168/242 - loss 0.32862954 - time (sec): 2.09 - samples/sec: 8156.09 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:39:36,094 epoch 6 - iter 192/242 - loss 0.32217550 - time (sec): 2.47 - samples/sec: 8004.08 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:39:36,470 epoch 6 - iter 216/242 - loss 0.31474353 - time (sec): 2.84 - samples/sec: 7773.42 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:39:36,838 epoch 6 - iter 240/242 - loss 0.31348762 - time (sec): 3.21 - samples/sec: 7666.77 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:39:36,865 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:36,865 EPOCH 6 done: loss 0.3122 - lr: 0.000022
2023-10-18 16:39:37,300 DEV : loss 0.25362712144851685 - f1-score (micro avg)  0.5309
2023-10-18 16:39:37,304 saving best model
2023-10-18 16:39:37,339 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:37,704 epoch 7 - iter 24/242 - loss 0.28891833 - time (sec): 0.36 - samples/sec: 6040.40 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:39:38,065 epoch 7 - iter 48/242 - loss 0.27193590 - time (sec): 0.73 - samples/sec: 6258.79 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:39:38,449 epoch 7 - iter 72/242 - loss 0.27996064 - time (sec): 1.11 - samples/sec: 6339.45 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:39:38,848 epoch 7 - iter 96/242 - loss 0.27139693 - time (sec): 1.51 - samples/sec: 6410.66 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:39,213 epoch 7 - iter 120/242 - loss 0.27737023 - time (sec): 1.87 - samples/sec: 6395.49 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:39,587 epoch 7 - iter 144/242 - loss 0.27279140 - time (sec): 2.25 - samples/sec: 6460.96 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:39:39,964 epoch 7 - iter 168/242 - loss 0.27081089 - time (sec): 2.62 - samples/sec: 6418.60 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:39:40,337 epoch 7 - iter 192/242 - loss 0.26738266 - time (sec): 3.00 - samples/sec: 6459.44 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:39:40,711 epoch 7 - iter 216/242 - loss 0.27349357 - time (sec): 3.37 - samples/sec: 6563.41 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:39:41,045 epoch 7 - iter 240/242 - loss 0.28316936 - time (sec): 3.71 - samples/sec: 6647.90 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:39:41,064 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:41,064 EPOCH 7 done: loss 0.2828 - lr: 0.000017
2023-10-18 16:39:41,492 DEV : loss 0.23814086616039276 - f1-score (micro avg)  0.5738
2023-10-18 16:39:41,497 saving best model
2023-10-18 16:39:41,530 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:41,903 epoch 8 - iter 24/242 - loss 0.31547182 - time (sec): 0.37 - samples/sec: 7024.26 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:39:42,260 epoch 8 - iter 48/242 - loss 0.30247072 - time (sec): 0.73 - samples/sec: 6520.83 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:39:42,616 epoch 8 - iter 72/242 - loss 0.28965626 - time (sec): 1.09 - samples/sec: 6685.88 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:42,994 epoch 8 - iter 96/242 - loss 0.28917354 - time (sec): 1.46 - samples/sec: 6478.82 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:43,366 epoch 8 - iter 120/242 - loss 0.28649000 - time (sec): 1.84 - samples/sec: 6390.07 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:39:43,727 epoch 8 - iter 144/242 - loss 0.28862576 - time (sec): 2.20 - samples/sec: 6586.60 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:39:44,131 epoch 8 - iter 168/242 - loss 0.28779853 - time (sec): 2.60 - samples/sec: 6585.48 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:39:44,518 epoch 8 - iter 192/242 - loss 0.28278129 - time (sec): 2.99 - samples/sec: 6495.38 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:39:44,891 epoch 8 - iter 216/242 - loss 0.27617550 - time (sec): 3.36 - samples/sec: 6504.31 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:39:45,271 epoch 8 - iter 240/242 - loss 0.28359245 - time (sec): 3.74 - samples/sec: 6589.64 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:39:45,297 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:45,297 EPOCH 8 done: loss 0.2832 - lr: 0.000011
2023-10-18 16:39:45,733 DEV : loss 0.24089400470256805 - f1-score (micro avg)  0.5721
2023-10-18 16:39:45,738 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:46,116 epoch 9 - iter 24/242 - loss 0.21235456 - time (sec): 0.38 - samples/sec: 6467.11 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:39:46,502 epoch 9 - iter 48/242 - loss 0.21511467 - time (sec): 0.76 - samples/sec: 6572.69 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:46,896 epoch 9 - iter 72/242 - loss 0.24755941 - time (sec): 1.16 - samples/sec: 6696.29 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:47,253 epoch 9 - iter 96/242 - loss 0.26974009 - time (sec): 1.51 - samples/sec: 6649.04 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:39:47,638 epoch 9 - iter 120/242 - loss 0.26561447 - time (sec): 1.90 - samples/sec: 6657.26 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:39:48,026 epoch 9 - iter 144/242 - loss 0.27419224 - time (sec): 2.29 - samples/sec: 6636.15 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:39:48,386 epoch 9 - iter 168/242 - loss 0.26908420 - time (sec): 2.65 - samples/sec: 6620.82 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:39:48,778 epoch 9 - iter 192/242 - loss 0.27675038 - time (sec): 3.04 - samples/sec: 6521.79 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:39:49,160 epoch 9 - iter 216/242 - loss 0.27189560 - time (sec): 3.42 - samples/sec: 6519.32 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:39:49,524 epoch 9 - iter 240/242 - loss 0.26927925 - time (sec): 3.78 - samples/sec: 6503.00 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:39:49,553 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:49,553 EPOCH 9 done: loss 0.2698 - lr: 0.000006
2023-10-18 16:39:49,988 DEV : loss 0.2282724827528 - f1-score (micro avg)  0.5742
2023-10-18 16:39:49,993 saving best model
2023-10-18 16:39:50,028 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:50,419 epoch 10 - iter 24/242 - loss 0.20255313 - time (sec): 0.39 - samples/sec: 6123.98 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:50,786 epoch 10 - iter 48/242 - loss 0.23425561 - time (sec): 0.76 - samples/sec: 6310.31 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:51,158 epoch 10 - iter 72/242 - loss 0.25213496 - time (sec): 1.13 - samples/sec: 6444.70 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:39:51,531 epoch 10 - iter 96/242 - loss 0.26020205 - time (sec): 1.50 - samples/sec: 6443.11 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:39:51,907 epoch 10 - iter 120/242 - loss 0.27241365 - time (sec): 1.88 - samples/sec: 6380.29 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:39:52,269 epoch 10 - iter 144/242 - loss 0.27332284 - time (sec): 2.24 - samples/sec: 6330.34 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:39:52,650 epoch 10 - iter 168/242 - loss 0.27164285 - time (sec): 2.62 - samples/sec: 6442.64 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:39:53,023 epoch 10 - iter 192/242 - loss 0.26523221 - time (sec): 3.00 - samples/sec: 6484.70 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:39:53,394 epoch 10 - iter 216/242 - loss 0.26808745 - time (sec): 3.37 - samples/sec: 6500.64 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:39:53,756 epoch 10 - iter 240/242 - loss 0.26508205 - time (sec): 3.73 - samples/sec: 6581.85 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:39:53,778 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:53,779 EPOCH 10 done: loss 0.2666 - lr: 0.000000
2023-10-18 16:39:54,231 DEV : loss 0.22958189249038696 - f1-score (micro avg)  0.5752
2023-10-18 16:39:54,236 saving best model
2023-10-18 16:39:54,301 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:54,301 Loading model from best epoch ...
2023-10-18 16:39:54,370 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 16:39:54,801 
Results:
- F-score (micro) 0.5168
- F-score (macro) 0.2892
- Accuracy 0.3656

By class:
              precision    recall  f1-score   support

       scope     0.3858    0.5891    0.4663       129
        pers     0.6069    0.7554    0.6731       139
        work     0.4318    0.2375    0.3065        80
         loc     0.0000    0.0000    0.0000         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.4831    0.5556    0.5168       360
   macro avg     0.2849    0.3164    0.2892       360
weighted avg     0.4685    0.5556    0.4951       360

2023-10-18 16:39:54,801 ----------------------------------------------------------------------------------------------------