File size: 24,157 Bytes
0faafe5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 128)
(position_embeddings): Embedding(512, 128)
(token_type_embeddings): Embedding(2, 128)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-1): 2 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=128, out_features=128, bias=True)
(key): Linear(in_features=128, out_features=128, bias=True)
(value): Linear(in_features=128, out_features=128, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=128, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=128, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=512, out_features=128, bias=True)
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=128, out_features=128, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=128, out_features=25, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 MultiCorpus: 966 train + 219 dev + 204 test sentences
- NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Train: 966 sentences
2023-10-18 16:39:12,200 (train_with_dev=False, train_with_test=False)
2023-10-18 16:39:12,200 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,200 Training Params:
2023-10-18 16:39:12,200 - learning_rate: "5e-05"
2023-10-18 16:39:12,200 - mini_batch_size: "4"
2023-10-18 16:39:12,201 - max_epochs: "10"
2023-10-18 16:39:12,201 - shuffle: "True"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Plugins:
2023-10-18 16:39:12,201 - TensorboardLogger
2023-10-18 16:39:12,201 - LinearScheduler | warmup_fraction: '0.1'
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Final evaluation on model from best epoch (best-model.pt)
2023-10-18 16:39:12,201 - metric: "('micro avg', 'f1-score')"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Computation:
2023-10-18 16:39:12,201 - compute on device: cuda:0
2023-10-18 16:39:12,201 - embedding storage: none
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Model training base path: "hmbench-ajmc/fr-dbmdz/bert-tiny-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:12,201 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-18 16:39:12,666 epoch 1 - iter 24/242 - loss 3.34072656 - time (sec): 0.46 - samples/sec: 5198.93 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:13,105 epoch 1 - iter 48/242 - loss 3.26591753 - time (sec): 0.90 - samples/sec: 5222.64 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:13,577 epoch 1 - iter 72/242 - loss 3.15898740 - time (sec): 1.38 - samples/sec: 5196.43 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:13,988 epoch 1 - iter 96/242 - loss 2.98050313 - time (sec): 1.79 - samples/sec: 5272.31 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:14,398 epoch 1 - iter 120/242 - loss 2.73215890 - time (sec): 2.20 - samples/sec: 5626.62 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:14,785 epoch 1 - iter 144/242 - loss 2.47482205 - time (sec): 2.58 - samples/sec: 5885.59 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:15,168 epoch 1 - iter 168/242 - loss 2.27234750 - time (sec): 2.97 - samples/sec: 5932.36 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:15,546 epoch 1 - iter 192/242 - loss 2.08230281 - time (sec): 3.34 - samples/sec: 6041.97 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:39:15,914 epoch 1 - iter 216/242 - loss 1.93805523 - time (sec): 3.71 - samples/sec: 6037.75 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:39:16,289 epoch 1 - iter 240/242 - loss 1.83328931 - time (sec): 4.09 - samples/sec: 6023.32 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:16,316 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:16,316 EPOCH 1 done: loss 1.8276 - lr: 0.000049
2023-10-18 16:39:16,587 DEV : loss 0.6149806380271912 - f1-score (micro avg) 0.0
2023-10-18 16:39:16,591 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:16,960 epoch 2 - iter 24/242 - loss 0.63637611 - time (sec): 0.37 - samples/sec: 6301.48 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:17,332 epoch 2 - iter 48/242 - loss 0.63515292 - time (sec): 0.74 - samples/sec: 6569.69 - lr: 0.000049 - momentum: 0.000000
2023-10-18 16:39:17,705 epoch 2 - iter 72/242 - loss 0.60643911 - time (sec): 1.11 - samples/sec: 6697.20 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:39:18,097 epoch 2 - iter 96/242 - loss 0.63024893 - time (sec): 1.50 - samples/sec: 6649.95 - lr: 0.000048 - momentum: 0.000000
2023-10-18 16:39:18,489 epoch 2 - iter 120/242 - loss 0.62899928 - time (sec): 1.90 - samples/sec: 6615.47 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:39:18,855 epoch 2 - iter 144/242 - loss 0.61009483 - time (sec): 2.26 - samples/sec: 6651.46 - lr: 0.000047 - momentum: 0.000000
2023-10-18 16:39:19,223 epoch 2 - iter 168/242 - loss 0.59249093 - time (sec): 2.63 - samples/sec: 6624.33 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:39:19,591 epoch 2 - iter 192/242 - loss 0.57656336 - time (sec): 3.00 - samples/sec: 6541.42 - lr: 0.000046 - momentum: 0.000000
2023-10-18 16:39:19,962 epoch 2 - iter 216/242 - loss 0.56723500 - time (sec): 3.37 - samples/sec: 6543.31 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:39:20,343 epoch 2 - iter 240/242 - loss 0.56412615 - time (sec): 3.75 - samples/sec: 6561.27 - lr: 0.000045 - momentum: 0.000000
2023-10-18 16:39:20,370 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:20,370 EPOCH 2 done: loss 0.5645 - lr: 0.000045
2023-10-18 16:39:20,800 DEV : loss 0.4076858460903168 - f1-score (micro avg) 0.4069
2023-10-18 16:39:20,804 saving best model
2023-10-18 16:39:20,839 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:21,219 epoch 3 - iter 24/242 - loss 0.44950477 - time (sec): 0.38 - samples/sec: 6957.07 - lr: 0.000044 - momentum: 0.000000
2023-10-18 16:39:21,590 epoch 3 - iter 48/242 - loss 0.46441966 - time (sec): 0.75 - samples/sec: 6757.35 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:39:21,986 epoch 3 - iter 72/242 - loss 0.48355561 - time (sec): 1.15 - samples/sec: 6834.81 - lr: 0.000043 - momentum: 0.000000
2023-10-18 16:39:22,344 epoch 3 - iter 96/242 - loss 0.48599707 - time (sec): 1.50 - samples/sec: 6618.72 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:39:22,700 epoch 3 - iter 120/242 - loss 0.48366048 - time (sec): 1.86 - samples/sec: 6597.14 - lr: 0.000042 - momentum: 0.000000
2023-10-18 16:39:23,032 epoch 3 - iter 144/242 - loss 0.46809598 - time (sec): 2.19 - samples/sec: 6783.65 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:39:23,379 epoch 3 - iter 168/242 - loss 0.46574184 - time (sec): 2.54 - samples/sec: 6809.11 - lr: 0.000041 - momentum: 0.000000
2023-10-18 16:39:23,763 epoch 3 - iter 192/242 - loss 0.44190262 - time (sec): 2.92 - samples/sec: 6824.99 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:39:24,141 epoch 3 - iter 216/242 - loss 0.43496200 - time (sec): 3.30 - samples/sec: 6751.17 - lr: 0.000040 - momentum: 0.000000
2023-10-18 16:39:24,503 epoch 3 - iter 240/242 - loss 0.42851370 - time (sec): 3.66 - samples/sec: 6729.96 - lr: 0.000039 - momentum: 0.000000
2023-10-18 16:39:24,529 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:24,529 EPOCH 3 done: loss 0.4294 - lr: 0.000039
2023-10-18 16:39:25,096 DEV : loss 0.32929080724716187 - f1-score (micro avg) 0.4931
2023-10-18 16:39:25,100 saving best model
2023-10-18 16:39:25,136 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:25,519 epoch 4 - iter 24/242 - loss 0.49055937 - time (sec): 0.38 - samples/sec: 6751.48 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:39:25,890 epoch 4 - iter 48/242 - loss 0.41222060 - time (sec): 0.75 - samples/sec: 6915.77 - lr: 0.000038 - momentum: 0.000000
2023-10-18 16:39:26,278 epoch 4 - iter 72/242 - loss 0.40643787 - time (sec): 1.14 - samples/sec: 6695.47 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:39:26,651 epoch 4 - iter 96/242 - loss 0.38427024 - time (sec): 1.51 - samples/sec: 6482.55 - lr: 0.000037 - momentum: 0.000000
2023-10-18 16:39:27,044 epoch 4 - iter 120/242 - loss 0.38029072 - time (sec): 1.91 - samples/sec: 6525.11 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:39:27,411 epoch 4 - iter 144/242 - loss 0.36912080 - time (sec): 2.27 - samples/sec: 6502.47 - lr: 0.000036 - momentum: 0.000000
2023-10-18 16:39:27,785 epoch 4 - iter 168/242 - loss 0.36034886 - time (sec): 2.65 - samples/sec: 6431.46 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:28,163 epoch 4 - iter 192/242 - loss 0.36068588 - time (sec): 3.03 - samples/sec: 6403.71 - lr: 0.000035 - momentum: 0.000000
2023-10-18 16:39:28,539 epoch 4 - iter 216/242 - loss 0.36250961 - time (sec): 3.40 - samples/sec: 6473.68 - lr: 0.000034 - momentum: 0.000000
2023-10-18 16:39:28,915 epoch 4 - iter 240/242 - loss 0.36148176 - time (sec): 3.78 - samples/sec: 6516.27 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:39:28,942 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:28,942 EPOCH 4 done: loss 0.3605 - lr: 0.000033
2023-10-18 16:39:29,376 DEV : loss 0.29638388752937317 - f1-score (micro avg) 0.4934
2023-10-18 16:39:29,380 saving best model
2023-10-18 16:39:29,415 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:29,790 epoch 5 - iter 24/242 - loss 0.33638521 - time (sec): 0.37 - samples/sec: 6839.32 - lr: 0.000033 - momentum: 0.000000
2023-10-18 16:39:30,161 epoch 5 - iter 48/242 - loss 0.32890594 - time (sec): 0.75 - samples/sec: 6941.91 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:39:30,526 epoch 5 - iter 72/242 - loss 0.30964898 - time (sec): 1.11 - samples/sec: 6746.25 - lr: 0.000032 - momentum: 0.000000
2023-10-18 16:39:30,897 epoch 5 - iter 96/242 - loss 0.31626763 - time (sec): 1.48 - samples/sec: 6659.49 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:39:31,267 epoch 5 - iter 120/242 - loss 0.33297265 - time (sec): 1.85 - samples/sec: 6735.79 - lr: 0.000031 - momentum: 0.000000
2023-10-18 16:39:31,634 epoch 5 - iter 144/242 - loss 0.33145979 - time (sec): 2.22 - samples/sec: 6650.67 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:32,007 epoch 5 - iter 168/242 - loss 0.33311663 - time (sec): 2.59 - samples/sec: 6659.52 - lr: 0.000030 - momentum: 0.000000
2023-10-18 16:39:32,382 epoch 5 - iter 192/242 - loss 0.32948726 - time (sec): 2.97 - samples/sec: 6574.73 - lr: 0.000029 - momentum: 0.000000
2023-10-18 16:39:32,767 epoch 5 - iter 216/242 - loss 0.32772837 - time (sec): 3.35 - samples/sec: 6557.20 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:39:33,116 epoch 5 - iter 240/242 - loss 0.32800025 - time (sec): 3.70 - samples/sec: 6633.02 - lr: 0.000028 - momentum: 0.000000
2023-10-18 16:39:33,140 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:33,140 EPOCH 5 done: loss 0.3270 - lr: 0.000028
2023-10-18 16:39:33,590 DEV : loss 0.2624404728412628 - f1-score (micro avg) 0.5279
2023-10-18 16:39:33,596 saving best model
2023-10-18 16:39:33,628 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:33,950 epoch 6 - iter 24/242 - loss 0.34206753 - time (sec): 0.32 - samples/sec: 6258.48 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:39:34,240 epoch 6 - iter 48/242 - loss 0.34319052 - time (sec): 0.61 - samples/sec: 7246.90 - lr: 0.000027 - momentum: 0.000000
2023-10-18 16:39:34,530 epoch 6 - iter 72/242 - loss 0.31813508 - time (sec): 0.90 - samples/sec: 7666.92 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:39:34,822 epoch 6 - iter 96/242 - loss 0.30359291 - time (sec): 1.19 - samples/sec: 8008.47 - lr: 0.000026 - momentum: 0.000000
2023-10-18 16:39:35,119 epoch 6 - iter 120/242 - loss 0.32660567 - time (sec): 1.49 - samples/sec: 8158.46 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:35,412 epoch 6 - iter 144/242 - loss 0.33032778 - time (sec): 1.78 - samples/sec: 8169.00 - lr: 0.000025 - momentum: 0.000000
2023-10-18 16:39:35,719 epoch 6 - iter 168/242 - loss 0.32862954 - time (sec): 2.09 - samples/sec: 8156.09 - lr: 0.000024 - momentum: 0.000000
2023-10-18 16:39:36,094 epoch 6 - iter 192/242 - loss 0.32217550 - time (sec): 2.47 - samples/sec: 8004.08 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:39:36,470 epoch 6 - iter 216/242 - loss 0.31474353 - time (sec): 2.84 - samples/sec: 7773.42 - lr: 0.000023 - momentum: 0.000000
2023-10-18 16:39:36,838 epoch 6 - iter 240/242 - loss 0.31348762 - time (sec): 3.21 - samples/sec: 7666.77 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:39:36,865 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:36,865 EPOCH 6 done: loss 0.3122 - lr: 0.000022
2023-10-18 16:39:37,300 DEV : loss 0.25362712144851685 - f1-score (micro avg) 0.5309
2023-10-18 16:39:37,304 saving best model
2023-10-18 16:39:37,339 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:37,704 epoch 7 - iter 24/242 - loss 0.28891833 - time (sec): 0.36 - samples/sec: 6040.40 - lr: 0.000022 - momentum: 0.000000
2023-10-18 16:39:38,065 epoch 7 - iter 48/242 - loss 0.27193590 - time (sec): 0.73 - samples/sec: 6258.79 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:39:38,449 epoch 7 - iter 72/242 - loss 0.27996064 - time (sec): 1.11 - samples/sec: 6339.45 - lr: 0.000021 - momentum: 0.000000
2023-10-18 16:39:38,848 epoch 7 - iter 96/242 - loss 0.27139693 - time (sec): 1.51 - samples/sec: 6410.66 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:39,213 epoch 7 - iter 120/242 - loss 0.27737023 - time (sec): 1.87 - samples/sec: 6395.49 - lr: 0.000020 - momentum: 0.000000
2023-10-18 16:39:39,587 epoch 7 - iter 144/242 - loss 0.27279140 - time (sec): 2.25 - samples/sec: 6460.96 - lr: 0.000019 - momentum: 0.000000
2023-10-18 16:39:39,964 epoch 7 - iter 168/242 - loss 0.27081089 - time (sec): 2.62 - samples/sec: 6418.60 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:39:40,337 epoch 7 - iter 192/242 - loss 0.26738266 - time (sec): 3.00 - samples/sec: 6459.44 - lr: 0.000018 - momentum: 0.000000
2023-10-18 16:39:40,711 epoch 7 - iter 216/242 - loss 0.27349357 - time (sec): 3.37 - samples/sec: 6563.41 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:39:41,045 epoch 7 - iter 240/242 - loss 0.28316936 - time (sec): 3.71 - samples/sec: 6647.90 - lr: 0.000017 - momentum: 0.000000
2023-10-18 16:39:41,064 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:41,064 EPOCH 7 done: loss 0.2828 - lr: 0.000017
2023-10-18 16:39:41,492 DEV : loss 0.23814086616039276 - f1-score (micro avg) 0.5738
2023-10-18 16:39:41,497 saving best model
2023-10-18 16:39:41,530 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:41,903 epoch 8 - iter 24/242 - loss 0.31547182 - time (sec): 0.37 - samples/sec: 7024.26 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:39:42,260 epoch 8 - iter 48/242 - loss 0.30247072 - time (sec): 0.73 - samples/sec: 6520.83 - lr: 0.000016 - momentum: 0.000000
2023-10-18 16:39:42,616 epoch 8 - iter 72/242 - loss 0.28965626 - time (sec): 1.09 - samples/sec: 6685.88 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:42,994 epoch 8 - iter 96/242 - loss 0.28917354 - time (sec): 1.46 - samples/sec: 6478.82 - lr: 0.000015 - momentum: 0.000000
2023-10-18 16:39:43,366 epoch 8 - iter 120/242 - loss 0.28649000 - time (sec): 1.84 - samples/sec: 6390.07 - lr: 0.000014 - momentum: 0.000000
2023-10-18 16:39:43,727 epoch 8 - iter 144/242 - loss 0.28862576 - time (sec): 2.20 - samples/sec: 6586.60 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:39:44,131 epoch 8 - iter 168/242 - loss 0.28779853 - time (sec): 2.60 - samples/sec: 6585.48 - lr: 0.000013 - momentum: 0.000000
2023-10-18 16:39:44,518 epoch 8 - iter 192/242 - loss 0.28278129 - time (sec): 2.99 - samples/sec: 6495.38 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:39:44,891 epoch 8 - iter 216/242 - loss 0.27617550 - time (sec): 3.36 - samples/sec: 6504.31 - lr: 0.000012 - momentum: 0.000000
2023-10-18 16:39:45,271 epoch 8 - iter 240/242 - loss 0.28359245 - time (sec): 3.74 - samples/sec: 6589.64 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:39:45,297 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:45,297 EPOCH 8 done: loss 0.2832 - lr: 0.000011
2023-10-18 16:39:45,733 DEV : loss 0.24089400470256805 - f1-score (micro avg) 0.5721
2023-10-18 16:39:45,738 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:46,116 epoch 9 - iter 24/242 - loss 0.21235456 - time (sec): 0.38 - samples/sec: 6467.11 - lr: 0.000011 - momentum: 0.000000
2023-10-18 16:39:46,502 epoch 9 - iter 48/242 - loss 0.21511467 - time (sec): 0.76 - samples/sec: 6572.69 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:46,896 epoch 9 - iter 72/242 - loss 0.24755941 - time (sec): 1.16 - samples/sec: 6696.29 - lr: 0.000010 - momentum: 0.000000
2023-10-18 16:39:47,253 epoch 9 - iter 96/242 - loss 0.26974009 - time (sec): 1.51 - samples/sec: 6649.04 - lr: 0.000009 - momentum: 0.000000
2023-10-18 16:39:47,638 epoch 9 - iter 120/242 - loss 0.26561447 - time (sec): 1.90 - samples/sec: 6657.26 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:39:48,026 epoch 9 - iter 144/242 - loss 0.27419224 - time (sec): 2.29 - samples/sec: 6636.15 - lr: 0.000008 - momentum: 0.000000
2023-10-18 16:39:48,386 epoch 9 - iter 168/242 - loss 0.26908420 - time (sec): 2.65 - samples/sec: 6620.82 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:39:48,778 epoch 9 - iter 192/242 - loss 0.27675038 - time (sec): 3.04 - samples/sec: 6521.79 - lr: 0.000007 - momentum: 0.000000
2023-10-18 16:39:49,160 epoch 9 - iter 216/242 - loss 0.27189560 - time (sec): 3.42 - samples/sec: 6519.32 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:39:49,524 epoch 9 - iter 240/242 - loss 0.26927925 - time (sec): 3.78 - samples/sec: 6503.00 - lr: 0.000006 - momentum: 0.000000
2023-10-18 16:39:49,553 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:49,553 EPOCH 9 done: loss 0.2698 - lr: 0.000006
2023-10-18 16:39:49,988 DEV : loss 0.2282724827528 - f1-score (micro avg) 0.5742
2023-10-18 16:39:49,993 saving best model
2023-10-18 16:39:50,028 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:50,419 epoch 10 - iter 24/242 - loss 0.20255313 - time (sec): 0.39 - samples/sec: 6123.98 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:50,786 epoch 10 - iter 48/242 - loss 0.23425561 - time (sec): 0.76 - samples/sec: 6310.31 - lr: 0.000005 - momentum: 0.000000
2023-10-18 16:39:51,158 epoch 10 - iter 72/242 - loss 0.25213496 - time (sec): 1.13 - samples/sec: 6444.70 - lr: 0.000004 - momentum: 0.000000
2023-10-18 16:39:51,531 epoch 10 - iter 96/242 - loss 0.26020205 - time (sec): 1.50 - samples/sec: 6443.11 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:39:51,907 epoch 10 - iter 120/242 - loss 0.27241365 - time (sec): 1.88 - samples/sec: 6380.29 - lr: 0.000003 - momentum: 0.000000
2023-10-18 16:39:52,269 epoch 10 - iter 144/242 - loss 0.27332284 - time (sec): 2.24 - samples/sec: 6330.34 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:39:52,650 epoch 10 - iter 168/242 - loss 0.27164285 - time (sec): 2.62 - samples/sec: 6442.64 - lr: 0.000002 - momentum: 0.000000
2023-10-18 16:39:53,023 epoch 10 - iter 192/242 - loss 0.26523221 - time (sec): 3.00 - samples/sec: 6484.70 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:39:53,394 epoch 10 - iter 216/242 - loss 0.26808745 - time (sec): 3.37 - samples/sec: 6500.64 - lr: 0.000001 - momentum: 0.000000
2023-10-18 16:39:53,756 epoch 10 - iter 240/242 - loss 0.26508205 - time (sec): 3.73 - samples/sec: 6581.85 - lr: 0.000000 - momentum: 0.000000
2023-10-18 16:39:53,778 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:53,779 EPOCH 10 done: loss 0.2666 - lr: 0.000000
2023-10-18 16:39:54,231 DEV : loss 0.22958189249038696 - f1-score (micro avg) 0.5752
2023-10-18 16:39:54,236 saving best model
2023-10-18 16:39:54,301 ----------------------------------------------------------------------------------------------------
2023-10-18 16:39:54,301 Loading model from best epoch ...
2023-10-18 16:39:54,370 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-18 16:39:54,801
Results:
- F-score (micro) 0.5168
- F-score (macro) 0.2892
- Accuracy 0.3656
By class:
precision recall f1-score support
scope 0.3858 0.5891 0.4663 129
pers 0.6069 0.7554 0.6731 139
work 0.4318 0.2375 0.3065 80
loc 0.0000 0.0000 0.0000 9
date 0.0000 0.0000 0.0000 3
micro avg 0.4831 0.5556 0.5168 360
macro avg 0.2849 0.3164 0.2892 360
weighted avg 0.4685 0.5556 0.4951 360
2023-10-18 16:39:54,801 ----------------------------------------------------------------------------------------------------
|