File size: 37,046 Bytes
8065a26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
2023-10-23 21:04:58,060 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 MultiCorpus: 3575 train + 1235 dev + 1266 test sentences
 - NER_HIPE_2022 Corpus: 3575 train + 1235 dev + 1266 test sentences - /home/ubuntu/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/de/with_doc_seperator
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 Train:  3575 sentences
2023-10-23 21:04:58,061         (train_with_dev=False, train_with_test=False)
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 Training Params:
2023-10-23 21:04:58,061  - learning_rate: "3e-05" 
2023-10-23 21:04:58,061  - mini_batch_size: "8"
2023-10-23 21:04:58,061  - max_epochs: "10"
2023-10-23 21:04:58,061  - shuffle: "True"
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 Plugins:
2023-10-23 21:04:58,061  - TensorboardLogger
2023-10-23 21:04:58,061  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 21:04:58,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,061 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 21:04:58,061  - metric: "('micro avg', 'f1-score')"
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,062 Computation:
2023-10-23 21:04:58,062  - compute on device: cuda:0
2023-10-23 21:04:58,062  - embedding storage: none
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,062 Model training base path: "hmbench-hipe2020/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,062 ----------------------------------------------------------------------------------------------------
2023-10-23 21:04:58,062 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 21:05:01,858 epoch 1 - iter 44/447 - loss 2.77674307 - time (sec): 3.80 - samples/sec: 2068.88 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:05:05,973 epoch 1 - iter 88/447 - loss 1.75956664 - time (sec): 7.91 - samples/sec: 2088.59 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:05:10,065 epoch 1 - iter 132/447 - loss 1.30302502 - time (sec): 12.00 - samples/sec: 2082.97 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:05:14,086 epoch 1 - iter 176/447 - loss 1.08268102 - time (sec): 16.02 - samples/sec: 2078.90 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:05:17,972 epoch 1 - iter 220/447 - loss 0.93560897 - time (sec): 19.91 - samples/sec: 2103.90 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:05:21,763 epoch 1 - iter 264/447 - loss 0.83394592 - time (sec): 23.70 - samples/sec: 2104.11 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:05:25,684 epoch 1 - iter 308/447 - loss 0.75226450 - time (sec): 27.62 - samples/sec: 2106.94 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:05:29,651 epoch 1 - iter 352/447 - loss 0.68133343 - time (sec): 31.59 - samples/sec: 2108.95 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:05:34,085 epoch 1 - iter 396/447 - loss 0.62684172 - time (sec): 36.02 - samples/sec: 2124.23 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:05:37,891 epoch 1 - iter 440/447 - loss 0.58441638 - time (sec): 39.83 - samples/sec: 2137.74 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:05:38,506 ----------------------------------------------------------------------------------------------------
2023-10-23 21:05:38,506 EPOCH 1 done: loss 0.5780 - lr: 0.000029
2023-10-23 21:05:43,315 DEV : loss 0.15914756059646606 - f1-score (micro avg)  0.5805
2023-10-23 21:05:43,335 saving best model
2023-10-23 21:05:43,804 ----------------------------------------------------------------------------------------------------
2023-10-23 21:05:47,532 epoch 2 - iter 44/447 - loss 0.17247700 - time (sec): 3.73 - samples/sec: 2206.20 - lr: 0.000030 - momentum: 0.000000
2023-10-23 21:05:51,556 epoch 2 - iter 88/447 - loss 0.15210658 - time (sec): 7.75 - samples/sec: 2170.56 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:05:55,638 epoch 2 - iter 132/447 - loss 0.14415904 - time (sec): 11.83 - samples/sec: 2166.91 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:05:59,766 epoch 2 - iter 176/447 - loss 0.14348377 - time (sec): 15.96 - samples/sec: 2153.80 - lr: 0.000029 - momentum: 0.000000
2023-10-23 21:06:03,542 epoch 2 - iter 220/447 - loss 0.13706169 - time (sec): 19.74 - samples/sec: 2132.36 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:06:07,684 epoch 2 - iter 264/447 - loss 0.13827372 - time (sec): 23.88 - samples/sec: 2135.49 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:06:11,700 epoch 2 - iter 308/447 - loss 0.13580790 - time (sec): 27.90 - samples/sec: 2140.60 - lr: 0.000028 - momentum: 0.000000
2023-10-23 21:06:15,332 epoch 2 - iter 352/447 - loss 0.13583544 - time (sec): 31.53 - samples/sec: 2145.24 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:06:19,814 epoch 2 - iter 396/447 - loss 0.13680668 - time (sec): 36.01 - samples/sec: 2139.14 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:06:23,630 epoch 2 - iter 440/447 - loss 0.13356993 - time (sec): 39.83 - samples/sec: 2137.55 - lr: 0.000027 - momentum: 0.000000
2023-10-23 21:06:24,229 ----------------------------------------------------------------------------------------------------
2023-10-23 21:06:24,230 EPOCH 2 done: loss 0.1328 - lr: 0.000027
2023-10-23 21:06:30,708 DEV : loss 0.12941311299800873 - f1-score (micro avg)  0.7109
2023-10-23 21:06:30,728 saving best model
2023-10-23 21:06:31,322 ----------------------------------------------------------------------------------------------------
2023-10-23 21:06:35,398 epoch 3 - iter 44/447 - loss 0.05897943 - time (sec): 4.07 - samples/sec: 2144.85 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:06:39,480 epoch 3 - iter 88/447 - loss 0.07267667 - time (sec): 8.16 - samples/sec: 2139.98 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:06:43,614 epoch 3 - iter 132/447 - loss 0.07124643 - time (sec): 12.29 - samples/sec: 2163.33 - lr: 0.000026 - momentum: 0.000000
2023-10-23 21:06:47,536 epoch 3 - iter 176/447 - loss 0.06874515 - time (sec): 16.21 - samples/sec: 2126.51 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:06:51,418 epoch 3 - iter 220/447 - loss 0.06845317 - time (sec): 20.10 - samples/sec: 2144.00 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:06:55,177 epoch 3 - iter 264/447 - loss 0.06741457 - time (sec): 23.85 - samples/sec: 2150.15 - lr: 0.000025 - momentum: 0.000000
2023-10-23 21:06:59,046 epoch 3 - iter 308/447 - loss 0.06763183 - time (sec): 27.72 - samples/sec: 2142.44 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:07:03,214 epoch 3 - iter 352/447 - loss 0.06611837 - time (sec): 31.89 - samples/sec: 2146.71 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:07:07,031 epoch 3 - iter 396/447 - loss 0.06604370 - time (sec): 35.71 - samples/sec: 2149.25 - lr: 0.000024 - momentum: 0.000000
2023-10-23 21:07:11,156 epoch 3 - iter 440/447 - loss 0.06746680 - time (sec): 39.83 - samples/sec: 2134.13 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:07:11,816 ----------------------------------------------------------------------------------------------------
2023-10-23 21:07:11,816 EPOCH 3 done: loss 0.0677 - lr: 0.000023
2023-10-23 21:07:18,319 DEV : loss 0.13155309855937958 - f1-score (micro avg)  0.7518
2023-10-23 21:07:18,339 saving best model
2023-10-23 21:07:18,912 ----------------------------------------------------------------------------------------------------
2023-10-23 21:07:22,645 epoch 4 - iter 44/447 - loss 0.04956695 - time (sec): 3.73 - samples/sec: 2133.43 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:07:26,708 epoch 4 - iter 88/447 - loss 0.04093136 - time (sec): 7.79 - samples/sec: 2113.74 - lr: 0.000023 - momentum: 0.000000
2023-10-23 21:07:30,759 epoch 4 - iter 132/447 - loss 0.03912973 - time (sec): 11.85 - samples/sec: 2133.26 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:07:34,940 epoch 4 - iter 176/447 - loss 0.03954112 - time (sec): 16.03 - samples/sec: 2116.49 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:07:39,131 epoch 4 - iter 220/447 - loss 0.03912372 - time (sec): 20.22 - samples/sec: 2109.00 - lr: 0.000022 - momentum: 0.000000
2023-10-23 21:07:43,162 epoch 4 - iter 264/447 - loss 0.04029854 - time (sec): 24.25 - samples/sec: 2116.55 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:07:47,407 epoch 4 - iter 308/447 - loss 0.04017848 - time (sec): 28.49 - samples/sec: 2117.43 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:07:51,304 epoch 4 - iter 352/447 - loss 0.03995350 - time (sec): 32.39 - samples/sec: 2121.72 - lr: 0.000021 - momentum: 0.000000
2023-10-23 21:07:55,232 epoch 4 - iter 396/447 - loss 0.04119580 - time (sec): 36.32 - samples/sec: 2122.18 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:07:59,018 epoch 4 - iter 440/447 - loss 0.04224669 - time (sec): 40.10 - samples/sec: 2126.79 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:07:59,609 ----------------------------------------------------------------------------------------------------
2023-10-23 21:07:59,609 EPOCH 4 done: loss 0.0431 - lr: 0.000020
2023-10-23 21:08:06,099 DEV : loss 0.17578744888305664 - f1-score (micro avg)  0.764
2023-10-23 21:08:06,120 saving best model
2023-10-23 21:08:06,714 ----------------------------------------------------------------------------------------------------
2023-10-23 21:08:10,724 epoch 5 - iter 44/447 - loss 0.03173418 - time (sec): 4.01 - samples/sec: 2167.42 - lr: 0.000020 - momentum: 0.000000
2023-10-23 21:08:14,826 epoch 5 - iter 88/447 - loss 0.03285878 - time (sec): 8.11 - samples/sec: 2075.18 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:08:18,587 epoch 5 - iter 132/447 - loss 0.03247897 - time (sec): 11.87 - samples/sec: 2091.33 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:08:22,960 epoch 5 - iter 176/447 - loss 0.03016416 - time (sec): 16.24 - samples/sec: 2100.92 - lr: 0.000019 - momentum: 0.000000
2023-10-23 21:08:26,816 epoch 5 - iter 220/447 - loss 0.02778420 - time (sec): 20.10 - samples/sec: 2102.65 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:08:30,624 epoch 5 - iter 264/447 - loss 0.02814833 - time (sec): 23.91 - samples/sec: 2103.17 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:08:35,077 epoch 5 - iter 308/447 - loss 0.02586079 - time (sec): 28.36 - samples/sec: 2110.52 - lr: 0.000018 - momentum: 0.000000
2023-10-23 21:08:39,022 epoch 5 - iter 352/447 - loss 0.02544490 - time (sec): 32.31 - samples/sec: 2113.41 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:08:42,951 epoch 5 - iter 396/447 - loss 0.02670970 - time (sec): 36.24 - samples/sec: 2126.29 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:08:46,739 epoch 5 - iter 440/447 - loss 0.02604997 - time (sec): 40.02 - samples/sec: 2134.99 - lr: 0.000017 - momentum: 0.000000
2023-10-23 21:08:47,301 ----------------------------------------------------------------------------------------------------
2023-10-23 21:08:47,301 EPOCH 5 done: loss 0.0260 - lr: 0.000017
2023-10-23 21:08:53,795 DEV : loss 0.19835765659809113 - f1-score (micro avg)  0.7738
2023-10-23 21:08:53,815 saving best model
2023-10-23 21:08:54,418 ----------------------------------------------------------------------------------------------------
2023-10-23 21:08:58,311 epoch 6 - iter 44/447 - loss 0.02184566 - time (sec): 3.89 - samples/sec: 2032.43 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:09:02,255 epoch 6 - iter 88/447 - loss 0.02189035 - time (sec): 7.84 - samples/sec: 2042.74 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:09:06,400 epoch 6 - iter 132/447 - loss 0.01858513 - time (sec): 11.98 - samples/sec: 2069.63 - lr: 0.000016 - momentum: 0.000000
2023-10-23 21:09:10,451 epoch 6 - iter 176/447 - loss 0.01839336 - time (sec): 16.03 - samples/sec: 2120.22 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:09:14,439 epoch 6 - iter 220/447 - loss 0.01779606 - time (sec): 20.02 - samples/sec: 2132.02 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:09:18,507 epoch 6 - iter 264/447 - loss 0.01809152 - time (sec): 24.09 - samples/sec: 2112.60 - lr: 0.000015 - momentum: 0.000000
2023-10-23 21:09:22,335 epoch 6 - iter 308/447 - loss 0.01799876 - time (sec): 27.92 - samples/sec: 2123.56 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:09:26,257 epoch 6 - iter 352/447 - loss 0.01963981 - time (sec): 31.84 - samples/sec: 2130.81 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:09:30,544 epoch 6 - iter 396/447 - loss 0.01948104 - time (sec): 36.13 - samples/sec: 2122.38 - lr: 0.000014 - momentum: 0.000000
2023-10-23 21:09:34,423 epoch 6 - iter 440/447 - loss 0.01934598 - time (sec): 40.00 - samples/sec: 2135.33 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:09:34,989 ----------------------------------------------------------------------------------------------------
2023-10-23 21:09:34,990 EPOCH 6 done: loss 0.0195 - lr: 0.000013
2023-10-23 21:09:41,480 DEV : loss 0.2243068516254425 - f1-score (micro avg)  0.7653
2023-10-23 21:09:41,500 ----------------------------------------------------------------------------------------------------
2023-10-23 21:09:45,224 epoch 7 - iter 44/447 - loss 0.00920856 - time (sec): 3.72 - samples/sec: 2231.28 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:09:49,298 epoch 7 - iter 88/447 - loss 0.00662161 - time (sec): 7.80 - samples/sec: 2168.79 - lr: 0.000013 - momentum: 0.000000
2023-10-23 21:09:53,791 epoch 7 - iter 132/447 - loss 0.00770613 - time (sec): 12.29 - samples/sec: 2141.83 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:09:57,731 epoch 7 - iter 176/447 - loss 0.00876968 - time (sec): 16.23 - samples/sec: 2139.89 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:10:01,668 epoch 7 - iter 220/447 - loss 0.01105371 - time (sec): 20.17 - samples/sec: 2133.73 - lr: 0.000012 - momentum: 0.000000
2023-10-23 21:10:05,750 epoch 7 - iter 264/447 - loss 0.01232071 - time (sec): 24.25 - samples/sec: 2134.11 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:10:09,797 epoch 7 - iter 308/447 - loss 0.01229655 - time (sec): 28.30 - samples/sec: 2129.39 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:10:13,591 epoch 7 - iter 352/447 - loss 0.01195873 - time (sec): 32.09 - samples/sec: 2131.21 - lr: 0.000011 - momentum: 0.000000
2023-10-23 21:10:17,520 epoch 7 - iter 396/447 - loss 0.01218580 - time (sec): 36.02 - samples/sec: 2138.12 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:10:21,420 epoch 7 - iter 440/447 - loss 0.01243524 - time (sec): 39.92 - samples/sec: 2141.02 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:10:21,970 ----------------------------------------------------------------------------------------------------
2023-10-23 21:10:21,971 EPOCH 7 done: loss 0.0123 - lr: 0.000010
2023-10-23 21:10:28,450 DEV : loss 0.23942111432552338 - f1-score (micro avg)  0.7782
2023-10-23 21:10:28,471 saving best model
2023-10-23 21:10:29,061 ----------------------------------------------------------------------------------------------------
2023-10-23 21:10:32,915 epoch 8 - iter 44/447 - loss 0.01227698 - time (sec): 3.85 - samples/sec: 2174.91 - lr: 0.000010 - momentum: 0.000000
2023-10-23 21:10:36,826 epoch 8 - iter 88/447 - loss 0.01241903 - time (sec): 7.76 - samples/sec: 2170.56 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:10:40,673 epoch 8 - iter 132/447 - loss 0.01170822 - time (sec): 11.61 - samples/sec: 2125.15 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:10:45,301 epoch 8 - iter 176/447 - loss 0.00886420 - time (sec): 16.24 - samples/sec: 2140.47 - lr: 0.000009 - momentum: 0.000000
2023-10-23 21:10:49,255 epoch 8 - iter 220/447 - loss 0.00834151 - time (sec): 20.19 - samples/sec: 2146.67 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:10:52,900 epoch 8 - iter 264/447 - loss 0.00734419 - time (sec): 23.84 - samples/sec: 2125.14 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:10:57,066 epoch 8 - iter 308/447 - loss 0.00699004 - time (sec): 28.00 - samples/sec: 2125.54 - lr: 0.000008 - momentum: 0.000000
2023-10-23 21:11:01,039 epoch 8 - iter 352/447 - loss 0.00726347 - time (sec): 31.98 - samples/sec: 2127.42 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:11:05,458 epoch 8 - iter 396/447 - loss 0.00762904 - time (sec): 36.40 - samples/sec: 2122.16 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:11:09,201 epoch 8 - iter 440/447 - loss 0.00722230 - time (sec): 40.14 - samples/sec: 2121.45 - lr: 0.000007 - momentum: 0.000000
2023-10-23 21:11:09,820 ----------------------------------------------------------------------------------------------------
2023-10-23 21:11:09,820 EPOCH 8 done: loss 0.0072 - lr: 0.000007
2023-10-23 21:11:16,024 DEV : loss 0.24051210284233093 - f1-score (micro avg)  0.7845
2023-10-23 21:11:16,045 saving best model
2023-10-23 21:11:16,944 ----------------------------------------------------------------------------------------------------
2023-10-23 21:11:20,570 epoch 9 - iter 44/447 - loss 0.00666362 - time (sec): 3.62 - samples/sec: 2217.26 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:11:24,590 epoch 9 - iter 88/447 - loss 0.00577915 - time (sec): 7.65 - samples/sec: 2129.85 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:11:28,832 epoch 9 - iter 132/447 - loss 0.00485046 - time (sec): 11.89 - samples/sec: 2118.85 - lr: 0.000006 - momentum: 0.000000
2023-10-23 21:11:32,648 epoch 9 - iter 176/447 - loss 0.00491996 - time (sec): 15.70 - samples/sec: 2142.21 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:11:36,618 epoch 9 - iter 220/447 - loss 0.00513214 - time (sec): 19.67 - samples/sec: 2151.50 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:11:40,891 epoch 9 - iter 264/447 - loss 0.00479915 - time (sec): 23.95 - samples/sec: 2148.31 - lr: 0.000005 - momentum: 0.000000
2023-10-23 21:11:45,144 epoch 9 - iter 308/447 - loss 0.00461094 - time (sec): 28.20 - samples/sec: 2147.40 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:11:48,902 epoch 9 - iter 352/447 - loss 0.00508793 - time (sec): 31.96 - samples/sec: 2144.23 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:11:52,648 epoch 9 - iter 396/447 - loss 0.00553986 - time (sec): 35.70 - samples/sec: 2147.82 - lr: 0.000004 - momentum: 0.000000
2023-10-23 21:11:56,680 epoch 9 - iter 440/447 - loss 0.00517049 - time (sec): 39.74 - samples/sec: 2149.08 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:11:57,308 ----------------------------------------------------------------------------------------------------
2023-10-23 21:11:57,309 EPOCH 9 done: loss 0.0051 - lr: 0.000003
2023-10-23 21:12:03,519 DEV : loss 0.2497478574514389 - f1-score (micro avg)  0.7909
2023-10-23 21:12:03,540 saving best model
2023-10-23 21:12:04,111 ----------------------------------------------------------------------------------------------------
2023-10-23 21:12:08,002 epoch 10 - iter 44/447 - loss 0.00252055 - time (sec): 3.89 - samples/sec: 2207.00 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:12:12,159 epoch 10 - iter 88/447 - loss 0.00205105 - time (sec): 8.05 - samples/sec: 2163.44 - lr: 0.000003 - momentum: 0.000000
2023-10-23 21:12:16,370 epoch 10 - iter 132/447 - loss 0.00162416 - time (sec): 12.26 - samples/sec: 2100.99 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:12:20,040 epoch 10 - iter 176/447 - loss 0.00314123 - time (sec): 15.93 - samples/sec: 2135.69 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:12:24,341 epoch 10 - iter 220/447 - loss 0.00360926 - time (sec): 20.23 - samples/sec: 2144.50 - lr: 0.000002 - momentum: 0.000000
2023-10-23 21:12:28,106 epoch 10 - iter 264/447 - loss 0.00340675 - time (sec): 23.99 - samples/sec: 2135.76 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:12:31,919 epoch 10 - iter 308/447 - loss 0.00353423 - time (sec): 27.81 - samples/sec: 2147.17 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:12:36,013 epoch 10 - iter 352/447 - loss 0.00314415 - time (sec): 31.90 - samples/sec: 2139.65 - lr: 0.000001 - momentum: 0.000000
2023-10-23 21:12:40,324 epoch 10 - iter 396/447 - loss 0.00312445 - time (sec): 36.21 - samples/sec: 2122.16 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:12:44,382 epoch 10 - iter 440/447 - loss 0.00304078 - time (sec): 40.27 - samples/sec: 2116.62 - lr: 0.000000 - momentum: 0.000000
2023-10-23 21:12:45,004 ----------------------------------------------------------------------------------------------------
2023-10-23 21:12:45,004 EPOCH 10 done: loss 0.0030 - lr: 0.000000
2023-10-23 21:12:51,224 DEV : loss 0.25497499108314514 - f1-score (micro avg)  0.7901
2023-10-23 21:12:51,722 ----------------------------------------------------------------------------------------------------
2023-10-23 21:12:51,723 Loading model from best epoch ...
2023-10-23 21:12:53,466 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-prod, B-prod, E-prod, I-prod, S-time, B-time, E-time, I-time
2023-10-23 21:12:58,280 
Results:
- F-score (micro) 0.7524
- F-score (macro) 0.665
- Accuracy 0.6214

By class:
              precision    recall  f1-score   support

         loc     0.8280    0.8641    0.8456       596
        pers     0.7064    0.7658    0.7349       333
         org     0.4706    0.4848    0.4776       132
        prod     0.6071    0.5152    0.5574        66
        time     0.7500    0.6735    0.7097        49

   micro avg     0.7391    0.7662    0.7524      1176
   macro avg     0.6724    0.6607    0.6650      1176
weighted avg     0.7378    0.7662    0.7511      1176

2023-10-23 21:12:58,280 ----------------------------------------------------------------------------------------------------