File size: 24,218 Bytes
ec91270
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
2023-10-23 15:49:02,712 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,713 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 15:49:02,713 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,713 MultiCorpus: 1100 train + 206 dev + 240 test sentences
 - NER_HIPE_2022 Corpus: 1100 train + 206 dev + 240 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/de/with_doc_seperator
2023-10-23 15:49:02,713 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Train:  1100 sentences
2023-10-23 15:49:02,714         (train_with_dev=False, train_with_test=False)
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Training Params:
2023-10-23 15:49:02,714  - learning_rate: "3e-05" 
2023-10-23 15:49:02,714  - mini_batch_size: "4"
2023-10-23 15:49:02,714  - max_epochs: "10"
2023-10-23 15:49:02,714  - shuffle: "True"
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Plugins:
2023-10-23 15:49:02,714  - TensorboardLogger
2023-10-23 15:49:02,714  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 15:49:02,714  - metric: "('micro avg', 'f1-score')"
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Computation:
2023-10-23 15:49:02,714  - compute on device: cuda:0
2023-10-23 15:49:02,714  - embedding storage: none
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Model training base path: "hmbench-ajmc/de-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:02,714 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 15:49:04,134 epoch 1 - iter 27/275 - loss 2.83941383 - time (sec): 1.42 - samples/sec: 1260.09 - lr: 0.000003 - momentum: 0.000000
2023-10-23 15:49:05,543 epoch 1 - iter 54/275 - loss 2.14658630 - time (sec): 2.83 - samples/sec: 1439.75 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:49:06,964 epoch 1 - iter 81/275 - loss 1.72389593 - time (sec): 4.25 - samples/sec: 1523.60 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:49:08,373 epoch 1 - iter 108/275 - loss 1.46781181 - time (sec): 5.66 - samples/sec: 1569.08 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:49:09,768 epoch 1 - iter 135/275 - loss 1.28242063 - time (sec): 7.05 - samples/sec: 1581.18 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:49:11,165 epoch 1 - iter 162/275 - loss 1.12735272 - time (sec): 8.45 - samples/sec: 1591.46 - lr: 0.000018 - momentum: 0.000000
2023-10-23 15:49:12,563 epoch 1 - iter 189/275 - loss 1.02268702 - time (sec): 9.85 - samples/sec: 1582.62 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:49:13,960 epoch 1 - iter 216/275 - loss 0.91909206 - time (sec): 11.24 - samples/sec: 1607.03 - lr: 0.000023 - momentum: 0.000000
2023-10-23 15:49:15,355 epoch 1 - iter 243/275 - loss 0.84777616 - time (sec): 12.64 - samples/sec: 1606.88 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:49:16,737 epoch 1 - iter 270/275 - loss 0.78992865 - time (sec): 14.02 - samples/sec: 1597.84 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:49:16,993 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:16,994 EPOCH 1 done: loss 0.7815 - lr: 0.000029
2023-10-23 15:49:17,408 DEV : loss 0.17806066572666168 - f1-score (micro avg)  0.7256
2023-10-23 15:49:17,414 saving best model
2023-10-23 15:49:17,807 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:19,194 epoch 2 - iter 27/275 - loss 0.22098647 - time (sec): 1.39 - samples/sec: 1834.03 - lr: 0.000030 - momentum: 0.000000
2023-10-23 15:49:20,589 epoch 2 - iter 54/275 - loss 0.22583475 - time (sec): 2.78 - samples/sec: 1648.14 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:49:21,977 epoch 2 - iter 81/275 - loss 0.19163146 - time (sec): 4.17 - samples/sec: 1597.05 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:49:23,396 epoch 2 - iter 108/275 - loss 0.19026888 - time (sec): 5.59 - samples/sec: 1540.17 - lr: 0.000029 - momentum: 0.000000
2023-10-23 15:49:24,807 epoch 2 - iter 135/275 - loss 0.17483222 - time (sec): 7.00 - samples/sec: 1541.10 - lr: 0.000028 - momentum: 0.000000
2023-10-23 15:49:26,223 epoch 2 - iter 162/275 - loss 0.17437410 - time (sec): 8.41 - samples/sec: 1531.54 - lr: 0.000028 - momentum: 0.000000
2023-10-23 15:49:27,666 epoch 2 - iter 189/275 - loss 0.16454035 - time (sec): 9.86 - samples/sec: 1533.95 - lr: 0.000028 - momentum: 0.000000
2023-10-23 15:49:29,094 epoch 2 - iter 216/275 - loss 0.17001907 - time (sec): 11.29 - samples/sec: 1547.08 - lr: 0.000027 - momentum: 0.000000
2023-10-23 15:49:30,501 epoch 2 - iter 243/275 - loss 0.16952883 - time (sec): 12.69 - samples/sec: 1556.75 - lr: 0.000027 - momentum: 0.000000
2023-10-23 15:49:31,915 epoch 2 - iter 270/275 - loss 0.16760966 - time (sec): 14.11 - samples/sec: 1582.65 - lr: 0.000027 - momentum: 0.000000
2023-10-23 15:49:32,173 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:32,174 EPOCH 2 done: loss 0.1669 - lr: 0.000027
2023-10-23 15:49:32,710 DEV : loss 0.1282263696193695 - f1-score (micro avg)  0.823
2023-10-23 15:49:32,715 saving best model
2023-10-23 15:49:33,267 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:34,603 epoch 3 - iter 27/275 - loss 0.11417363 - time (sec): 1.33 - samples/sec: 1752.69 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:49:35,971 epoch 3 - iter 54/275 - loss 0.10292930 - time (sec): 2.70 - samples/sec: 1682.84 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:49:37,343 epoch 3 - iter 81/275 - loss 0.11259165 - time (sec): 4.07 - samples/sec: 1658.61 - lr: 0.000026 - momentum: 0.000000
2023-10-23 15:49:38,693 epoch 3 - iter 108/275 - loss 0.11306199 - time (sec): 5.42 - samples/sec: 1673.09 - lr: 0.000025 - momentum: 0.000000
2023-10-23 15:49:39,998 epoch 3 - iter 135/275 - loss 0.10315859 - time (sec): 6.73 - samples/sec: 1691.92 - lr: 0.000025 - momentum: 0.000000
2023-10-23 15:49:41,256 epoch 3 - iter 162/275 - loss 0.09810185 - time (sec): 7.98 - samples/sec: 1703.55 - lr: 0.000025 - momentum: 0.000000
2023-10-23 15:49:42,535 epoch 3 - iter 189/275 - loss 0.09949418 - time (sec): 9.26 - samples/sec: 1708.34 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:49:43,884 epoch 3 - iter 216/275 - loss 0.09940572 - time (sec): 10.61 - samples/sec: 1692.65 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:49:45,221 epoch 3 - iter 243/275 - loss 0.09918018 - time (sec): 11.95 - samples/sec: 1700.14 - lr: 0.000024 - momentum: 0.000000
2023-10-23 15:49:46,548 epoch 3 - iter 270/275 - loss 0.09785407 - time (sec): 13.28 - samples/sec: 1677.37 - lr: 0.000023 - momentum: 0.000000
2023-10-23 15:49:46,810 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:46,810 EPOCH 3 done: loss 0.0986 - lr: 0.000023
2023-10-23 15:49:47,349 DEV : loss 0.1556384116411209 - f1-score (micro avg)  0.8397
2023-10-23 15:49:47,354 saving best model
2023-10-23 15:49:47,902 ----------------------------------------------------------------------------------------------------
2023-10-23 15:49:49,268 epoch 4 - iter 27/275 - loss 0.10635465 - time (sec): 1.36 - samples/sec: 1699.34 - lr: 0.000023 - momentum: 0.000000
2023-10-23 15:49:50,661 epoch 4 - iter 54/275 - loss 0.07787905 - time (sec): 2.76 - samples/sec: 1710.12 - lr: 0.000023 - momentum: 0.000000
2023-10-23 15:49:52,050 epoch 4 - iter 81/275 - loss 0.07086144 - time (sec): 4.15 - samples/sec: 1619.19 - lr: 0.000022 - momentum: 0.000000
2023-10-23 15:49:53,470 epoch 4 - iter 108/275 - loss 0.06660226 - time (sec): 5.57 - samples/sec: 1579.83 - lr: 0.000022 - momentum: 0.000000
2023-10-23 15:49:55,026 epoch 4 - iter 135/275 - loss 0.06133614 - time (sec): 7.12 - samples/sec: 1579.05 - lr: 0.000022 - momentum: 0.000000
2023-10-23 15:49:56,436 epoch 4 - iter 162/275 - loss 0.07371892 - time (sec): 8.53 - samples/sec: 1600.96 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:49:57,837 epoch 4 - iter 189/275 - loss 0.06854694 - time (sec): 9.93 - samples/sec: 1601.60 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:49:59,240 epoch 4 - iter 216/275 - loss 0.07000006 - time (sec): 11.34 - samples/sec: 1590.97 - lr: 0.000021 - momentum: 0.000000
2023-10-23 15:50:00,651 epoch 4 - iter 243/275 - loss 0.06874057 - time (sec): 12.75 - samples/sec: 1562.29 - lr: 0.000020 - momentum: 0.000000
2023-10-23 15:50:02,081 epoch 4 - iter 270/275 - loss 0.06913971 - time (sec): 14.18 - samples/sec: 1577.52 - lr: 0.000020 - momentum: 0.000000
2023-10-23 15:50:02,344 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:02,344 EPOCH 4 done: loss 0.0702 - lr: 0.000020
2023-10-23 15:50:02,885 DEV : loss 0.1502317488193512 - f1-score (micro avg)  0.8561
2023-10-23 15:50:02,890 saving best model
2023-10-23 15:50:03,412 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:04,753 epoch 5 - iter 27/275 - loss 0.05181714 - time (sec): 1.34 - samples/sec: 1740.38 - lr: 0.000020 - momentum: 0.000000
2023-10-23 15:50:06,005 epoch 5 - iter 54/275 - loss 0.07653701 - time (sec): 2.59 - samples/sec: 1739.60 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:50:07,269 epoch 5 - iter 81/275 - loss 0.06745093 - time (sec): 3.86 - samples/sec: 1753.54 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:50:08,532 epoch 5 - iter 108/275 - loss 0.05451561 - time (sec): 5.12 - samples/sec: 1742.89 - lr: 0.000019 - momentum: 0.000000
2023-10-23 15:50:09,799 epoch 5 - iter 135/275 - loss 0.05158637 - time (sec): 6.39 - samples/sec: 1769.32 - lr: 0.000018 - momentum: 0.000000
2023-10-23 15:50:11,070 epoch 5 - iter 162/275 - loss 0.05025736 - time (sec): 7.66 - samples/sec: 1749.73 - lr: 0.000018 - momentum: 0.000000
2023-10-23 15:50:12,346 epoch 5 - iter 189/275 - loss 0.04870088 - time (sec): 8.93 - samples/sec: 1752.00 - lr: 0.000018 - momentum: 0.000000
2023-10-23 15:50:13,649 epoch 5 - iter 216/275 - loss 0.04861125 - time (sec): 10.24 - samples/sec: 1747.96 - lr: 0.000017 - momentum: 0.000000
2023-10-23 15:50:14,972 epoch 5 - iter 243/275 - loss 0.05333777 - time (sec): 11.56 - samples/sec: 1721.85 - lr: 0.000017 - momentum: 0.000000
2023-10-23 15:50:16,328 epoch 5 - iter 270/275 - loss 0.05110952 - time (sec): 12.92 - samples/sec: 1723.24 - lr: 0.000017 - momentum: 0.000000
2023-10-23 15:50:16,568 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:16,568 EPOCH 5 done: loss 0.0516 - lr: 0.000017
2023-10-23 15:50:17,100 DEV : loss 0.14082755148410797 - f1-score (micro avg)  0.891
2023-10-23 15:50:17,105 saving best model
2023-10-23 15:50:17,625 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:19,040 epoch 6 - iter 27/275 - loss 0.00386518 - time (sec): 1.41 - samples/sec: 1784.05 - lr: 0.000016 - momentum: 0.000000
2023-10-23 15:50:20,440 epoch 6 - iter 54/275 - loss 0.02921163 - time (sec): 2.81 - samples/sec: 1583.87 - lr: 0.000016 - momentum: 0.000000
2023-10-23 15:50:21,835 epoch 6 - iter 81/275 - loss 0.02939935 - time (sec): 4.21 - samples/sec: 1575.72 - lr: 0.000016 - momentum: 0.000000
2023-10-23 15:50:23,184 epoch 6 - iter 108/275 - loss 0.02973268 - time (sec): 5.56 - samples/sec: 1623.15 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:50:24,544 epoch 6 - iter 135/275 - loss 0.02759517 - time (sec): 6.92 - samples/sec: 1619.60 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:50:25,902 epoch 6 - iter 162/275 - loss 0.03106721 - time (sec): 8.27 - samples/sec: 1602.30 - lr: 0.000015 - momentum: 0.000000
2023-10-23 15:50:27,254 epoch 6 - iter 189/275 - loss 0.03200975 - time (sec): 9.63 - samples/sec: 1600.57 - lr: 0.000014 - momentum: 0.000000
2023-10-23 15:50:28,594 epoch 6 - iter 216/275 - loss 0.03413447 - time (sec): 10.97 - samples/sec: 1606.80 - lr: 0.000014 - momentum: 0.000000
2023-10-23 15:50:29,960 epoch 6 - iter 243/275 - loss 0.03567708 - time (sec): 12.33 - samples/sec: 1618.86 - lr: 0.000014 - momentum: 0.000000
2023-10-23 15:50:31,317 epoch 6 - iter 270/275 - loss 0.03741332 - time (sec): 13.69 - samples/sec: 1631.75 - lr: 0.000013 - momentum: 0.000000
2023-10-23 15:50:31,570 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:31,571 EPOCH 6 done: loss 0.0385 - lr: 0.000013
2023-10-23 15:50:32,119 DEV : loss 0.16913354396820068 - f1-score (micro avg)  0.8636
2023-10-23 15:50:32,125 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:33,534 epoch 7 - iter 27/275 - loss 0.04239827 - time (sec): 1.41 - samples/sec: 1661.75 - lr: 0.000013 - momentum: 0.000000
2023-10-23 15:50:34,955 epoch 7 - iter 54/275 - loss 0.03679797 - time (sec): 2.83 - samples/sec: 1551.80 - lr: 0.000013 - momentum: 0.000000
2023-10-23 15:50:36,351 epoch 7 - iter 81/275 - loss 0.03544132 - time (sec): 4.23 - samples/sec: 1533.62 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:50:37,751 epoch 7 - iter 108/275 - loss 0.03506543 - time (sec): 5.63 - samples/sec: 1577.68 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:50:39,184 epoch 7 - iter 135/275 - loss 0.03111449 - time (sec): 7.06 - samples/sec: 1574.98 - lr: 0.000012 - momentum: 0.000000
2023-10-23 15:50:40,590 epoch 7 - iter 162/275 - loss 0.02965772 - time (sec): 8.46 - samples/sec: 1558.89 - lr: 0.000011 - momentum: 0.000000
2023-10-23 15:50:42,017 epoch 7 - iter 189/275 - loss 0.02765179 - time (sec): 9.89 - samples/sec: 1570.22 - lr: 0.000011 - momentum: 0.000000
2023-10-23 15:50:43,434 epoch 7 - iter 216/275 - loss 0.02591692 - time (sec): 11.31 - samples/sec: 1581.26 - lr: 0.000011 - momentum: 0.000000
2023-10-23 15:50:44,860 epoch 7 - iter 243/275 - loss 0.02934153 - time (sec): 12.73 - samples/sec: 1586.85 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:50:46,288 epoch 7 - iter 270/275 - loss 0.02777065 - time (sec): 14.16 - samples/sec: 1576.34 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:50:46,565 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:46,566 EPOCH 7 done: loss 0.0278 - lr: 0.000010
2023-10-23 15:50:47,104 DEV : loss 0.16255125403404236 - f1-score (micro avg)  0.8921
2023-10-23 15:50:47,109 saving best model
2023-10-23 15:50:47,650 ----------------------------------------------------------------------------------------------------
2023-10-23 15:50:49,094 epoch 8 - iter 27/275 - loss 0.04335307 - time (sec): 1.44 - samples/sec: 1509.48 - lr: 0.000010 - momentum: 0.000000
2023-10-23 15:50:50,577 epoch 8 - iter 54/275 - loss 0.02995593 - time (sec): 2.92 - samples/sec: 1564.81 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:50:52,039 epoch 8 - iter 81/275 - loss 0.03529654 - time (sec): 4.39 - samples/sec: 1527.29 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:50:53,509 epoch 8 - iter 108/275 - loss 0.02984522 - time (sec): 5.86 - samples/sec: 1565.65 - lr: 0.000009 - momentum: 0.000000
2023-10-23 15:50:54,955 epoch 8 - iter 135/275 - loss 0.02572520 - time (sec): 7.30 - samples/sec: 1575.37 - lr: 0.000008 - momentum: 0.000000
2023-10-23 15:50:56,432 epoch 8 - iter 162/275 - loss 0.02300740 - time (sec): 8.78 - samples/sec: 1591.54 - lr: 0.000008 - momentum: 0.000000
2023-10-23 15:50:57,902 epoch 8 - iter 189/275 - loss 0.02124124 - time (sec): 10.25 - samples/sec: 1563.76 - lr: 0.000008 - momentum: 0.000000
2023-10-23 15:50:59,316 epoch 8 - iter 216/275 - loss 0.01934416 - time (sec): 11.66 - samples/sec: 1547.46 - lr: 0.000007 - momentum: 0.000000
2023-10-23 15:51:00,830 epoch 8 - iter 243/275 - loss 0.02046265 - time (sec): 13.18 - samples/sec: 1530.95 - lr: 0.000007 - momentum: 0.000000
2023-10-23 15:51:02,342 epoch 8 - iter 270/275 - loss 0.02074013 - time (sec): 14.69 - samples/sec: 1518.47 - lr: 0.000007 - momentum: 0.000000
2023-10-23 15:51:02,628 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:02,628 EPOCH 8 done: loss 0.0226 - lr: 0.000007
2023-10-23 15:51:03,168 DEV : loss 0.15772368013858795 - f1-score (micro avg)  0.8953
2023-10-23 15:51:03,174 saving best model
2023-10-23 15:51:03,723 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:05,148 epoch 9 - iter 27/275 - loss 0.01504040 - time (sec): 1.42 - samples/sec: 1600.13 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:51:06,569 epoch 9 - iter 54/275 - loss 0.01703108 - time (sec): 2.84 - samples/sec: 1611.83 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:51:07,979 epoch 9 - iter 81/275 - loss 0.02222312 - time (sec): 4.25 - samples/sec: 1597.43 - lr: 0.000006 - momentum: 0.000000
2023-10-23 15:51:09,366 epoch 9 - iter 108/275 - loss 0.02072152 - time (sec): 5.64 - samples/sec: 1592.87 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:51:10,792 epoch 9 - iter 135/275 - loss 0.01794282 - time (sec): 7.06 - samples/sec: 1600.44 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:51:12,232 epoch 9 - iter 162/275 - loss 0.01549132 - time (sec): 8.50 - samples/sec: 1609.76 - lr: 0.000005 - momentum: 0.000000
2023-10-23 15:51:13,672 epoch 9 - iter 189/275 - loss 0.01519766 - time (sec): 9.95 - samples/sec: 1589.81 - lr: 0.000004 - momentum: 0.000000
2023-10-23 15:51:15,129 epoch 9 - iter 216/275 - loss 0.01494770 - time (sec): 11.40 - samples/sec: 1587.79 - lr: 0.000004 - momentum: 0.000000
2023-10-23 15:51:16,584 epoch 9 - iter 243/275 - loss 0.01368241 - time (sec): 12.86 - samples/sec: 1576.48 - lr: 0.000004 - momentum: 0.000000
2023-10-23 15:51:18,013 epoch 9 - iter 270/275 - loss 0.01433322 - time (sec): 14.29 - samples/sec: 1572.91 - lr: 0.000003 - momentum: 0.000000
2023-10-23 15:51:18,281 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:18,281 EPOCH 9 done: loss 0.0141 - lr: 0.000003
2023-10-23 15:51:18,817 DEV : loss 0.16109435260295868 - f1-score (micro avg)  0.8953
2023-10-23 15:51:18,822 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:20,254 epoch 10 - iter 27/275 - loss 0.01426170 - time (sec): 1.43 - samples/sec: 1472.72 - lr: 0.000003 - momentum: 0.000000
2023-10-23 15:51:21,704 epoch 10 - iter 54/275 - loss 0.00849233 - time (sec): 2.88 - samples/sec: 1510.58 - lr: 0.000003 - momentum: 0.000000
2023-10-23 15:51:23,155 epoch 10 - iter 81/275 - loss 0.00932013 - time (sec): 4.33 - samples/sec: 1551.58 - lr: 0.000002 - momentum: 0.000000
2023-10-23 15:51:24,587 epoch 10 - iter 108/275 - loss 0.00701482 - time (sec): 5.76 - samples/sec: 1570.09 - lr: 0.000002 - momentum: 0.000000
2023-10-23 15:51:26,045 epoch 10 - iter 135/275 - loss 0.00720699 - time (sec): 7.22 - samples/sec: 1540.00 - lr: 0.000002 - momentum: 0.000000
2023-10-23 15:51:27,472 epoch 10 - iter 162/275 - loss 0.00872732 - time (sec): 8.65 - samples/sec: 1518.11 - lr: 0.000001 - momentum: 0.000000
2023-10-23 15:51:28,940 epoch 10 - iter 189/275 - loss 0.00824989 - time (sec): 10.12 - samples/sec: 1509.48 - lr: 0.000001 - momentum: 0.000000
2023-10-23 15:51:30,385 epoch 10 - iter 216/275 - loss 0.01055276 - time (sec): 11.56 - samples/sec: 1525.31 - lr: 0.000001 - momentum: 0.000000
2023-10-23 15:51:31,861 epoch 10 - iter 243/275 - loss 0.01278568 - time (sec): 13.04 - samples/sec: 1530.53 - lr: 0.000000 - momentum: 0.000000
2023-10-23 15:51:33,313 epoch 10 - iter 270/275 - loss 0.01209491 - time (sec): 14.49 - samples/sec: 1541.25 - lr: 0.000000 - momentum: 0.000000
2023-10-23 15:51:33,576 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:33,577 EPOCH 10 done: loss 0.0119 - lr: 0.000000
2023-10-23 15:51:34,109 DEV : loss 0.16141371428966522 - f1-score (micro avg)  0.8994
2023-10-23 15:51:34,114 saving best model
2023-10-23 15:51:35,051 ----------------------------------------------------------------------------------------------------
2023-10-23 15:51:35,052 Loading model from best epoch ...
2023-10-23 15:51:36,783 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-23 15:51:37,444 
Results:
- F-score (micro) 0.9041
- F-score (macro) 0.7376
- Accuracy 0.8411

By class:
              precision    recall  f1-score   support

       scope     0.8883    0.9034    0.8958       176
        pers     0.9685    0.9609    0.9647       128
        work     0.8451    0.8108    0.8276        74
      object     1.0000    1.0000    1.0000         2
         loc     0.0000    0.0000    0.0000         2

   micro avg     0.9077    0.9005    0.9041       382
   macro avg     0.7404    0.7350    0.7376       382
weighted avg     0.9027    0.9005    0.9015       382

2023-10-23 15:51:37,444 ----------------------------------------------------------------------------------------------------