File size: 4,870 Bytes
881b5c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_3x_beit_base_adamax_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8848080133555927
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_3x_beit_base_adamax_001_fold1
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9792
- Accuracy: 0.8848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5347 | 1.0 | 226 | 0.5865 | 0.7796 |
| 0.481 | 2.0 | 452 | 0.4735 | 0.8047 |
| 0.392 | 3.0 | 678 | 0.3827 | 0.8397 |
| 0.3513 | 4.0 | 904 | 0.4550 | 0.8080 |
| 0.3191 | 5.0 | 1130 | 0.5279 | 0.8364 |
| 0.2659 | 6.0 | 1356 | 0.3980 | 0.8564 |
| 0.2461 | 7.0 | 1582 | 0.3991 | 0.8798 |
| 0.2656 | 8.0 | 1808 | 0.4588 | 0.8664 |
| 0.1595 | 9.0 | 2034 | 0.4089 | 0.8715 |
| 0.1456 | 10.0 | 2260 | 0.4772 | 0.8631 |
| 0.0575 | 11.0 | 2486 | 0.5294 | 0.8614 |
| 0.0953 | 12.0 | 2712 | 0.4940 | 0.8748 |
| 0.0784 | 13.0 | 2938 | 0.5992 | 0.8548 |
| 0.0313 | 14.0 | 3164 | 0.5155 | 0.8731 |
| 0.1006 | 15.0 | 3390 | 0.5131 | 0.8898 |
| 0.0394 | 16.0 | 3616 | 0.6916 | 0.8815 |
| 0.0372 | 17.0 | 3842 | 0.6693 | 0.8748 |
| 0.0368 | 18.0 | 4068 | 0.7021 | 0.8765 |
| 0.0584 | 19.0 | 4294 | 0.7487 | 0.8715 |
| 0.0031 | 20.0 | 4520 | 0.6697 | 0.8865 |
| 0.0088 | 21.0 | 4746 | 0.7746 | 0.8865 |
| 0.0319 | 22.0 | 4972 | 0.7417 | 0.8614 |
| 0.0133 | 23.0 | 5198 | 0.9026 | 0.8581 |
| 0.001 | 24.0 | 5424 | 0.7822 | 0.8865 |
| 0.0186 | 25.0 | 5650 | 0.8476 | 0.8698 |
| 0.0405 | 26.0 | 5876 | 0.7548 | 0.8915 |
| 0.0061 | 27.0 | 6102 | 0.7539 | 0.8798 |
| 0.0213 | 28.0 | 6328 | 0.8310 | 0.8848 |
| 0.0063 | 29.0 | 6554 | 0.7841 | 0.8781 |
| 0.0003 | 30.0 | 6780 | 0.8782 | 0.8798 |
| 0.0005 | 31.0 | 7006 | 0.8431 | 0.8865 |
| 0.0002 | 32.0 | 7232 | 0.8900 | 0.8915 |
| 0.0077 | 33.0 | 7458 | 0.9508 | 0.8898 |
| 0.0001 | 34.0 | 7684 | 0.8836 | 0.8848 |
| 0.0001 | 35.0 | 7910 | 0.8853 | 0.8898 |
| 0.0002 | 36.0 | 8136 | 0.8931 | 0.8865 |
| 0.0 | 37.0 | 8362 | 0.9183 | 0.8831 |
| 0.0 | 38.0 | 8588 | 0.9668 | 0.8865 |
| 0.0 | 39.0 | 8814 | 0.9612 | 0.8881 |
| 0.0002 | 40.0 | 9040 | 0.9819 | 0.8848 |
| 0.0033 | 41.0 | 9266 | 0.9561 | 0.8915 |
| 0.0038 | 42.0 | 9492 | 0.9632 | 0.8915 |
| 0.0001 | 43.0 | 9718 | 0.9739 | 0.8865 |
| 0.0 | 44.0 | 9944 | 0.9696 | 0.8848 |
| 0.0 | 45.0 | 10170 | 0.9928 | 0.8815 |
| 0.0 | 46.0 | 10396 | 0.9848 | 0.8798 |
| 0.0 | 47.0 | 10622 | 0.9849 | 0.8815 |
| 0.0 | 48.0 | 10848 | 0.9754 | 0.8831 |
| 0.0 | 49.0 | 11074 | 0.9791 | 0.8848 |
| 0.0 | 50.0 | 11300 | 0.9792 | 0.8848 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|