File size: 4,822 Bytes
4636be7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_1x_beit_base_adamax_00001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9031719532554258
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_1x_beit_base_adamax_00001_fold1
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6618
- Accuracy: 0.9032
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4246 | 1.0 | 76 | 0.3687 | 0.8598 |
| 0.2552 | 2.0 | 152 | 0.2999 | 0.8798 |
| 0.1978 | 3.0 | 228 | 0.2886 | 0.8731 |
| 0.1972 | 4.0 | 304 | 0.2763 | 0.8865 |
| 0.1608 | 5.0 | 380 | 0.2799 | 0.8865 |
| 0.1346 | 6.0 | 456 | 0.3048 | 0.8815 |
| 0.0943 | 7.0 | 532 | 0.3402 | 0.8898 |
| 0.0622 | 8.0 | 608 | 0.3287 | 0.8915 |
| 0.0613 | 9.0 | 684 | 0.3634 | 0.8865 |
| 0.0585 | 10.0 | 760 | 0.3905 | 0.8881 |
| 0.0328 | 11.0 | 836 | 0.3830 | 0.8948 |
| 0.0344 | 12.0 | 912 | 0.4094 | 0.8915 |
| 0.053 | 13.0 | 988 | 0.4103 | 0.8932 |
| 0.0261 | 14.0 | 1064 | 0.4498 | 0.8932 |
| 0.0261 | 15.0 | 1140 | 0.4936 | 0.8915 |
| 0.0343 | 16.0 | 1216 | 0.4859 | 0.8932 |
| 0.0153 | 17.0 | 1292 | 0.5143 | 0.8815 |
| 0.0038 | 18.0 | 1368 | 0.5271 | 0.8865 |
| 0.0046 | 19.0 | 1444 | 0.5417 | 0.8898 |
| 0.0282 | 20.0 | 1520 | 0.5283 | 0.8948 |
| 0.0048 | 21.0 | 1596 | 0.5421 | 0.8965 |
| 0.0018 | 22.0 | 1672 | 0.5503 | 0.8898 |
| 0.0064 | 23.0 | 1748 | 0.5860 | 0.8848 |
| 0.0241 | 24.0 | 1824 | 0.5762 | 0.8948 |
| 0.0207 | 25.0 | 1900 | 0.5869 | 0.8915 |
| 0.0293 | 26.0 | 1976 | 0.5842 | 0.8948 |
| 0.0029 | 27.0 | 2052 | 0.6141 | 0.8932 |
| 0.0198 | 28.0 | 2128 | 0.6046 | 0.8982 |
| 0.0329 | 29.0 | 2204 | 0.6286 | 0.8948 |
| 0.0036 | 30.0 | 2280 | 0.6053 | 0.8948 |
| 0.0339 | 31.0 | 2356 | 0.6159 | 0.8881 |
| 0.0211 | 32.0 | 2432 | 0.6253 | 0.8932 |
| 0.0315 | 33.0 | 2508 | 0.6357 | 0.8915 |
| 0.0135 | 34.0 | 2584 | 0.6365 | 0.8932 |
| 0.0361 | 35.0 | 2660 | 0.6309 | 0.8965 |
| 0.0313 | 36.0 | 2736 | 0.6365 | 0.8965 |
| 0.0198 | 37.0 | 2812 | 0.6348 | 0.8965 |
| 0.0132 | 38.0 | 2888 | 0.6243 | 0.8948 |
| 0.0085 | 39.0 | 2964 | 0.6351 | 0.8948 |
| 0.001 | 40.0 | 3040 | 0.6372 | 0.8948 |
| 0.0149 | 41.0 | 3116 | 0.6607 | 0.8998 |
| 0.0056 | 42.0 | 3192 | 0.6570 | 0.9065 |
| 0.0011 | 43.0 | 3268 | 0.6635 | 0.8998 |
| 0.003 | 44.0 | 3344 | 0.6527 | 0.8982 |
| 0.041 | 45.0 | 3420 | 0.6537 | 0.8982 |
| 0.0011 | 46.0 | 3496 | 0.6576 | 0.8982 |
| 0.0196 | 47.0 | 3572 | 0.6599 | 0.8998 |
| 0.0117 | 48.0 | 3648 | 0.6620 | 0.9032 |
| 0.0018 | 49.0 | 3724 | 0.6617 | 0.9032 |
| 0.0144 | 50.0 | 3800 | 0.6618 | 0.9032 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|