File size: 4,823 Bytes
0555fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_1x_beit_base_adamax_0001_fold4
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9047619047619048
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_1x_beit_base_adamax_0001_fold4
This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2926
- Accuracy: 0.9048
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 6 | 1.1428 | 0.6905 |
| 1.3492 | 2.0 | 12 | 0.5681 | 0.7857 |
| 1.3492 | 3.0 | 18 | 0.2529 | 0.9286 |
| 0.3166 | 4.0 | 24 | 0.2221 | 0.9524 |
| 0.0428 | 5.0 | 30 | 0.2913 | 0.9048 |
| 0.0428 | 6.0 | 36 | 0.3814 | 0.8571 |
| 0.0093 | 7.0 | 42 | 0.2701 | 0.9524 |
| 0.0093 | 8.0 | 48 | 0.2796 | 0.9286 |
| 0.0019 | 9.0 | 54 | 0.3043 | 0.9048 |
| 0.0029 | 10.0 | 60 | 0.4551 | 0.8810 |
| 0.0029 | 11.0 | 66 | 0.3262 | 0.9286 |
| 0.001 | 12.0 | 72 | 0.2680 | 0.9524 |
| 0.001 | 13.0 | 78 | 0.2601 | 0.9524 |
| 0.0006 | 14.0 | 84 | 0.3353 | 0.9048 |
| 0.0008 | 15.0 | 90 | 0.3915 | 0.9048 |
| 0.0008 | 16.0 | 96 | 0.4398 | 0.8810 |
| 0.0004 | 17.0 | 102 | 0.3988 | 0.9048 |
| 0.0004 | 18.0 | 108 | 0.3416 | 0.9048 |
| 0.0053 | 19.0 | 114 | 0.2975 | 0.9286 |
| 0.0004 | 20.0 | 120 | 0.2890 | 0.9286 |
| 0.0004 | 21.0 | 126 | 0.2852 | 0.9286 |
| 0.0061 | 22.0 | 132 | 0.2652 | 0.9286 |
| 0.0061 | 23.0 | 138 | 0.2502 | 0.9286 |
| 0.0002 | 24.0 | 144 | 0.2495 | 0.9286 |
| 0.0003 | 25.0 | 150 | 0.2641 | 0.9286 |
| 0.0003 | 26.0 | 156 | 0.2771 | 0.9286 |
| 0.0002 | 27.0 | 162 | 0.2877 | 0.9286 |
| 0.0002 | 28.0 | 168 | 0.3003 | 0.9286 |
| 0.0002 | 29.0 | 174 | 0.3118 | 0.9286 |
| 0.0002 | 30.0 | 180 | 0.3215 | 0.9286 |
| 0.0002 | 31.0 | 186 | 0.3282 | 0.9286 |
| 0.0003 | 32.0 | 192 | 0.3381 | 0.9286 |
| 0.0003 | 33.0 | 198 | 0.3472 | 0.9048 |
| 0.0002 | 34.0 | 204 | 0.3491 | 0.9048 |
| 0.0049 | 35.0 | 210 | 0.3154 | 0.9048 |
| 0.0049 | 36.0 | 216 | 0.2965 | 0.9048 |
| 0.0002 | 37.0 | 222 | 0.2887 | 0.9048 |
| 0.0002 | 38.0 | 228 | 0.2886 | 0.9048 |
| 0.0002 | 39.0 | 234 | 0.2894 | 0.9048 |
| 0.0002 | 40.0 | 240 | 0.2903 | 0.9048 |
| 0.0002 | 41.0 | 246 | 0.2922 | 0.9048 |
| 0.0004 | 42.0 | 252 | 0.2926 | 0.9048 |
| 0.0004 | 43.0 | 258 | 0.2926 | 0.9048 |
| 0.0002 | 44.0 | 264 | 0.2926 | 0.9048 |
| 0.0002 | 45.0 | 270 | 0.2926 | 0.9048 |
| 0.0002 | 46.0 | 276 | 0.2926 | 0.9048 |
| 0.0009 | 47.0 | 282 | 0.2926 | 0.9048 |
| 0.0009 | 48.0 | 288 | 0.2926 | 0.9048 |
| 0.0004 | 49.0 | 294 | 0.2926 | 0.9048 |
| 0.0001 | 50.0 | 300 | 0.2926 | 0.9048 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|