YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
A tiny random pipeline for testing purposes based on THUDM/CogView4-6B.
from transformers import AutoTokenizer, GlmConfig, GlmModel
from diffusers import CogView4Transformer2DModel, FlowMatchEulerDiscreteScheduler, AutoencoderKL, CogView4Pipeline
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
config = GlmConfig(hidden_size=32, intermediate_size=8, num_hidden_layers=2, num_attention_heads=4, head_dim=8)
text_encoder = GlmModel(config)
transformer_kwargs = {
"patch_size": 2,
"in_channels": 4,
"num_layers": 2,
"attention_head_dim": 4,
"num_attention_heads": 4,
"out_channels": 4,
"text_embed_dim": 32,
"time_embed_dim": 8,
"condition_dim": 4,
}
transformer = CogView4Transformer2DModel(**transformer_kwargs)
vae_kwargs = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 4,
"sample_size": 128,
}
vae = AutoencoderKL(**vae_kwargs)
scheduler = FlowMatchEulerDiscreteScheduler()
pipe = CogView4Pipeline(tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, scheduler=scheduler)
pipe.save_pretrained("./dump-cogview4-dummy-pipe")
- Downloads last month
- 16
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.