File size: 2,400 Bytes
4aef0ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: batch-size16_FFPP-c40_opencv-1FPS_unaugmentation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8468039370969567
- name: Precision
type: precision
value: 0.8510173960212436
- name: Recall
type: recall
value: 0.9749826569545612
- name: F1
type: f1
value: 0.908792089611553
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# batch-size16_FFPP-c40_opencv-1FPS_unaugmentation
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3378
- Accuracy: 0.8468
- Precision: 0.8510
- Recall: 0.9750
- F1: 0.9088
- Roc Auc: 0.8879
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
| 0.4067 | 0.9998 | 1381 | 0.3378 | 0.8468 | 0.8510 | 0.9750 | 0.9088 | 0.8879 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1
- Datasets 2.20.0
- Tokenizers 0.19.1
|