|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- recall |
|
- precision |
|
- f1 |
|
model-index: |
|
- name: FFPP-Raw_1FPS_faces-expand-40-aligned_metric-acc-precision-recall-f1 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8064887989445775 |
|
- name: Recall |
|
type: recall |
|
value: 0.599275070479259 |
|
- name: Precision |
|
type: precision |
|
value: 0.26912642430819317 |
|
- name: F1 |
|
type: f1 |
|
value: 0.37144283574638043 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# FFPP-Raw_1FPS_faces-expand-40-aligned_metric-acc-precision-recall-f1 |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4464 |
|
- Accuracy: 0.8065 |
|
- Recall: 0.5993 |
|
- Precision: 0.2691 |
|
- F1: 0.3714 |
|
- Roc Auc: 0.8135 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Roc Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| |
|
| 0.1821 | 1.0 | 1348 | 0.1286 | 0.9464 | 0.8533 | 0.8953 | 0.8738 | 0.9858 | |
|
| 0.1333 | 2.0 | 2696 | 0.0715 | 0.9725 | 0.9129 | 0.9586 | 0.9352 | 0.9960 | |
|
| 0.0809 | 3.0 | 4044 | 0.0520 | 0.9804 | 0.9344 | 0.9743 | 0.9539 | 0.9980 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.2 |
|
- Pytorch 2.2.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|