--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - precision - f1 model-index: - name: FFPP-Raw_1FPS_faces-expand-40-aligned_metric-acc-precision-recall-f1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8064887989445775 - name: Recall type: recall value: 0.599275070479259 - name: Precision type: precision value: 0.26912642430819317 - name: F1 type: f1 value: 0.37144283574638043 --- # FFPP-Raw_1FPS_faces-expand-40-aligned_metric-acc-precision-recall-f1 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4464 - Accuracy: 0.8065 - Recall: 0.5993 - Precision: 0.2691 - F1: 0.3714 - Roc Auc: 0.8135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------:| | 0.1821 | 1.0 | 1348 | 0.1286 | 0.9464 | 0.8533 | 0.8953 | 0.8738 | 0.9858 | | 0.1333 | 2.0 | 2696 | 0.0715 | 0.9725 | 0.9129 | 0.9586 | 0.9352 | 0.9960 | | 0.0809 | 3.0 | 4044 | 0.0520 | 0.9804 | 0.9344 | 0.9743 | 0.9539 | 0.9980 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.2