idt5-base-qg_adapter_v2
This model is a fine-tuned version of muchad/idt5-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7050
- Rouge1: 0.4251
- Rouge2: 0.2075
- Rougel: 0.3983
- Rougelsum: 0.3984
- Bleu: 0.1471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
---|---|---|---|---|---|---|---|---|
2.4083 | 1.0 | 7645 | 1.8277 | 0.3795 | 0.1682 | 0.3512 | 0.3512 | 0.1180 |
2.2612 | 2.0 | 15290 | 1.7645 | 0.4158 | 0.1983 | 0.3882 | 0.3884 | 0.1400 |
2.2144 | 3.0 | 22935 | 1.7297 | 0.4230 | 0.2058 | 0.3963 | 0.3965 | 0.1453 |
2.1663 | 4.0 | 30580 | 1.7051 | 0.4232 | 0.2064 | 0.3970 | 0.3971 | 0.1461 |
2.1538 | 5.0 | 38225 | 1.7050 | 0.4251 | 0.2075 | 0.3983 | 0.3984 | 0.1471 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.4.0a0+f70bd71a48.nv24.06
- Datasets 3.0.2
- Tokenizers 0.20.1
- Downloads last month
- 9
Model tree for hawalurahman/idt5-base-qg_adapter_v2
Base model
muchad/idt5-base