idt5-base-qg_adapter_v2

This model is a fine-tuned version of muchad/idt5-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7050
  • Rouge1: 0.4251
  • Rouge2: 0.2075
  • Rougel: 0.3983
  • Rougelsum: 0.3984
  • Bleu: 0.1471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu
2.4083 1.0 7645 1.8277 0.3795 0.1682 0.3512 0.3512 0.1180
2.2612 2.0 15290 1.7645 0.4158 0.1983 0.3882 0.3884 0.1400
2.2144 3.0 22935 1.7297 0.4230 0.2058 0.3963 0.3965 0.1453
2.1663 4.0 30580 1.7051 0.4232 0.2064 0.3970 0.3971 0.1461
2.1538 5.0 38225 1.7050 0.4251 0.2075 0.3983 0.3984 0.1471

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.4.0a0+f70bd71a48.nv24.06
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
9
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for hawalurahman/idt5-base-qg_adapter_v2

Base model

muchad/idt5-base
Adapter
(6)
this model