distill-bert-finetune

This model is a fine-tuned version of distilbert/distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5165
  • Accuracy: 0.884
  • Auc: 0.888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Auc
No log 3.5088 200 0.3942 0.853 0.908
No log 7.0175 400 0.4839 0.857 0.897
0.2711 10.5263 600 0.4707 0.857 0.903
0.2711 14.0351 800 0.5121 0.871 0.886
0.1079 17.5439 1000 0.5165 0.884 0.888

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
6
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for harshvardhan96/distill-bert-finetune

Finetuned
(7637)
this model