FIX: add max filename checks and trim if too long
#1
by
mrjoshuap
- opened
- run_rknn-lcm.py.py +698 -0
run_rknn-lcm.py.py
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from rknnlite.api import RKNNLite
|
2 |
+
from PIL import Image
|
3 |
+
from typing import Callable, List, Optional, Union, Tuple
|
4 |
+
from transformers import CLIPFeatureExtractor, CLIPTokenizer
|
5 |
+
import torch # Only used for `torch.from_tensor` in `pipe.scheduler.step()`
|
6 |
+
import numpy as np
|
7 |
+
import logging
|
8 |
+
from diffusers.schedulers import (
|
9 |
+
LCMScheduler
|
10 |
+
)
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
13 |
+
from diffusers import StableDiffusionPipeline
|
14 |
+
import PIL
|
15 |
+
import platform
|
16 |
+
import os
|
17 |
+
import time
|
18 |
+
import json
|
19 |
+
import argparse
|
20 |
+
|
21 |
+
|
22 |
+
logging.basicConfig()
|
23 |
+
logger = logging.getLogger(__name__)
|
24 |
+
logger.setLevel(logging.INFO)
|
25 |
+
|
26 |
+
|
27 |
+
class RKNN2Model:
|
28 |
+
""" Wrapper for running RKNPU2 models """
|
29 |
+
|
30 |
+
def __init__(self, model_dir):
|
31 |
+
logger.info(f"Loading {model_dir}")
|
32 |
+
start = time.time()
|
33 |
+
self.config = json.load(open(os.path.join(model_dir, "config.json")))
|
34 |
+
assert os.path.exists(model_dir) and os.path.exists(
|
35 |
+
os.path.join(model_dir, "model.rknn"))
|
36 |
+
self.rknnlite = RKNNLite()
|
37 |
+
self.rknnlite.load_rknn(os.path.join(model_dir, "model.rknn"))
|
38 |
+
# Multi-core will cause kernel crash
|
39 |
+
self.rknnlite.init_runtime(core_mask=RKNNLite.NPU_CORE_AUTO)
|
40 |
+
load_time = time.time() - start
|
41 |
+
logger.info(f"Done. Took {load_time:.1f} seconds.")
|
42 |
+
self.modelname = model_dir.split("/")[-1]
|
43 |
+
self.inference_time = 0
|
44 |
+
|
45 |
+
def __call__(self, **kwargs) -> List[np.ndarray]:
|
46 |
+
# np.savez(f"rknn_out/{self.modelname}_input_{self.inference_time}.npz", **kwargs)
|
47 |
+
# self.inference_time += 1
|
48 |
+
# print(kwargs)
|
49 |
+
input_list = [value for key, value in kwargs.items()]
|
50 |
+
for i, input in enumerate(input_list):
|
51 |
+
if isinstance(input, np.ndarray):
|
52 |
+
print(f"input {i} shape: {input.shape}")
|
53 |
+
|
54 |
+
results = self.rknnlite.inference(
|
55 |
+
inputs=input_list, data_format='nchw')
|
56 |
+
for res in results:
|
57 |
+
print(f"output shape: {res.shape}")
|
58 |
+
return results
|
59 |
+
|
60 |
+
|
61 |
+
class RKNN2LatentConsistencyPipeline(DiffusionPipeline):
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
text_encoder: RKNN2Model,
|
66 |
+
unet: RKNN2Model,
|
67 |
+
vae_decoder: RKNN2Model,
|
68 |
+
scheduler: LCMScheduler,
|
69 |
+
tokenizer: CLIPTokenizer,
|
70 |
+
force_zeros_for_empty_prompt: Optional[bool] = True,
|
71 |
+
feature_extractor: Optional[CLIPFeatureExtractor] = None,
|
72 |
+
text_encoder_2: Optional[RKNN2Model] = None,
|
73 |
+
tokenizer_2: Optional[CLIPTokenizer] = None
|
74 |
+
):
|
75 |
+
super().__init__()
|
76 |
+
|
77 |
+
self.register_modules(
|
78 |
+
tokenizer=tokenizer,
|
79 |
+
scheduler=scheduler,
|
80 |
+
feature_extractor=feature_extractor,
|
81 |
+
)
|
82 |
+
self.force_zeros_for_empty_prompt = force_zeros_for_empty_prompt
|
83 |
+
self.safety_checker = None
|
84 |
+
|
85 |
+
self.text_encoder = text_encoder
|
86 |
+
self.text_encoder_2 = text_encoder_2
|
87 |
+
self.tokenizer_2 = tokenizer_2
|
88 |
+
self.unet = unet
|
89 |
+
self.vae_decoder = vae_decoder
|
90 |
+
|
91 |
+
VAE_DECODER_UPSAMPLE_FACTOR = 8
|
92 |
+
self.vae_scale_factor = VAE_DECODER_UPSAMPLE_FACTOR
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def postprocess(
|
96 |
+
image: np.ndarray,
|
97 |
+
output_type: str = "pil",
|
98 |
+
do_denormalize: Optional[List[bool]] = None,
|
99 |
+
):
|
100 |
+
def numpy_to_pil(images: np.ndarray):
|
101 |
+
"""
|
102 |
+
Convert a numpy image or a batch of images to a PIL image.
|
103 |
+
"""
|
104 |
+
if images.ndim == 3:
|
105 |
+
images = images[None, ...]
|
106 |
+
images = (images * 255).round().astype("uint8")
|
107 |
+
if images.shape[-1] == 1:
|
108 |
+
# special case for grayscale (single channel) images
|
109 |
+
pil_images = [Image.fromarray(
|
110 |
+
image.squeeze(), mode="L") for image in images]
|
111 |
+
else:
|
112 |
+
pil_images = [Image.fromarray(image) for image in images]
|
113 |
+
|
114 |
+
return pil_images
|
115 |
+
|
116 |
+
def denormalize(images: np.ndarray):
|
117 |
+
"""
|
118 |
+
Denormalize an image array to [0,1].
|
119 |
+
"""
|
120 |
+
return np.clip(images / 2 + 0.5, 0, 1)
|
121 |
+
|
122 |
+
if not isinstance(image, np.ndarray):
|
123 |
+
raise ValueError(
|
124 |
+
f"Input for postprocessing is in incorrect format: {
|
125 |
+
type(image)}. We only support np array"
|
126 |
+
)
|
127 |
+
if output_type not in ["latent", "np", "pil"]:
|
128 |
+
deprecation_message = (
|
129 |
+
f"the output_type {
|
130 |
+
output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
131 |
+
"`pil`, `np`, `pt`, `latent`"
|
132 |
+
)
|
133 |
+
logger.warning(deprecation_message)
|
134 |
+
output_type = "np"
|
135 |
+
|
136 |
+
if output_type == "latent":
|
137 |
+
return image
|
138 |
+
|
139 |
+
if do_denormalize is None:
|
140 |
+
raise ValueError("do_denormalize is required for postprocessing")
|
141 |
+
|
142 |
+
image = np.stack(
|
143 |
+
[denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])], axis=0
|
144 |
+
)
|
145 |
+
image = image.transpose((0, 2, 3, 1))
|
146 |
+
|
147 |
+
if output_type == "pil":
|
148 |
+
image = numpy_to_pil(image)
|
149 |
+
|
150 |
+
return image
|
151 |
+
|
152 |
+
def _encode_prompt(
|
153 |
+
self,
|
154 |
+
prompt: Union[str, List[str]],
|
155 |
+
num_images_per_prompt: int,
|
156 |
+
do_classifier_free_guidance: bool,
|
157 |
+
negative_prompt: Optional[Union[str, list]],
|
158 |
+
prompt_embeds: Optional[np.ndarray] = None,
|
159 |
+
negative_prompt_embeds: Optional[np.ndarray] = None,
|
160 |
+
):
|
161 |
+
r"""
|
162 |
+
Encodes the prompt into text encoder hidden states.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
prompt (`Union[str, List[str]]`):
|
166 |
+
prompt to be encoded
|
167 |
+
num_images_per_prompt (`int`):
|
168 |
+
number of images that should be generated per prompt
|
169 |
+
do_classifier_free_guidance (`bool`):
|
170 |
+
whether to use classifier free guidance or not
|
171 |
+
negative_prompt (`Optional[Union[str, list]]`):
|
172 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
173 |
+
if `guidance_scale` is less than `1`).
|
174 |
+
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
|
175 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
176 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
177 |
+
negative_prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
|
178 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
179 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
180 |
+
argument.
|
181 |
+
"""
|
182 |
+
if isinstance(prompt, str):
|
183 |
+
batch_size = 1
|
184 |
+
elif isinstance(prompt, list):
|
185 |
+
batch_size = len(prompt)
|
186 |
+
else:
|
187 |
+
batch_size = prompt_embeds.shape[0]
|
188 |
+
|
189 |
+
if prompt_embeds is None:
|
190 |
+
# get prompt text embeddings
|
191 |
+
text_inputs = self.tokenizer(
|
192 |
+
prompt,
|
193 |
+
padding="max_length",
|
194 |
+
max_length=self.tokenizer.model_max_length,
|
195 |
+
truncation=True,
|
196 |
+
return_tensors="np",
|
197 |
+
)
|
198 |
+
text_input_ids = text_inputs.input_ids
|
199 |
+
untruncated_ids = self.tokenizer(
|
200 |
+
prompt, padding="max_length", return_tensors="np").input_ids
|
201 |
+
|
202 |
+
if not np.array_equal(text_input_ids, untruncated_ids):
|
203 |
+
removed_text = self.tokenizer.batch_decode(
|
204 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
|
205 |
+
)
|
206 |
+
logger.warning(
|
207 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
208 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
209 |
+
)
|
210 |
+
|
211 |
+
prompt_embeds = self.text_encoder(
|
212 |
+
input_ids=text_input_ids.astype(np.int32))[0]
|
213 |
+
|
214 |
+
prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
|
215 |
+
|
216 |
+
# get unconditional embeddings for classifier free guidance
|
217 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
218 |
+
uncond_tokens: List[str]
|
219 |
+
if negative_prompt is None:
|
220 |
+
uncond_tokens = [""] * batch_size
|
221 |
+
elif type(prompt) is not type(negative_prompt):
|
222 |
+
raise TypeError(
|
223 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {
|
224 |
+
type(negative_prompt)} !="
|
225 |
+
f" {type(prompt)}."
|
226 |
+
)
|
227 |
+
elif isinstance(negative_prompt, str):
|
228 |
+
uncond_tokens = [negative_prompt] * batch_size
|
229 |
+
elif batch_size != len(negative_prompt):
|
230 |
+
raise ValueError(
|
231 |
+
f"`negative_prompt`: {negative_prompt} has batch size {
|
232 |
+
len(negative_prompt)}, but `prompt`:"
|
233 |
+
f" {prompt} has batch size {
|
234 |
+
batch_size}. Please make sure that passed `negative_prompt` matches"
|
235 |
+
" the batch size of `prompt`."
|
236 |
+
)
|
237 |
+
else:
|
238 |
+
uncond_tokens = negative_prompt
|
239 |
+
|
240 |
+
max_length = prompt_embeds.shape[1]
|
241 |
+
uncond_input = self.tokenizer(
|
242 |
+
uncond_tokens,
|
243 |
+
padding="max_length",
|
244 |
+
max_length=max_length,
|
245 |
+
truncation=True,
|
246 |
+
return_tensors="np",
|
247 |
+
)
|
248 |
+
negative_prompt_embeds = self.text_encoder(
|
249 |
+
input_ids=uncond_input.input_ids.astype(np.int32))[0]
|
250 |
+
|
251 |
+
if do_classifier_free_guidance:
|
252 |
+
negative_prompt_embeds = np.repeat(
|
253 |
+
negative_prompt_embeds, num_images_per_prompt, axis=0)
|
254 |
+
|
255 |
+
# For classifier free guidance, we need to do two forward passes.
|
256 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
257 |
+
# to avoid doing two forward passes
|
258 |
+
prompt_embeds = np.concatenate(
|
259 |
+
[negative_prompt_embeds, prompt_embeds])
|
260 |
+
|
261 |
+
return prompt_embeds
|
262 |
+
|
263 |
+
# Copied from https://github.com/huggingface/diffusers/blob/v0.17.1/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion.py#L217
|
264 |
+
def check_inputs(
|
265 |
+
self,
|
266 |
+
prompt: Union[str, List[str]],
|
267 |
+
height: Optional[int],
|
268 |
+
width: Optional[int],
|
269 |
+
callback_steps: int,
|
270 |
+
negative_prompt: Optional[str] = None,
|
271 |
+
prompt_embeds: Optional[np.ndarray] = None,
|
272 |
+
negative_prompt_embeds: Optional[np.ndarray] = None,
|
273 |
+
):
|
274 |
+
if height % 8 != 0 or width % 8 != 0:
|
275 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {
|
276 |
+
height} and {width}.")
|
277 |
+
|
278 |
+
if (callback_steps is None) or (
|
279 |
+
callback_steps is not None and (not isinstance(
|
280 |
+
callback_steps, int) or callback_steps <= 0)
|
281 |
+
):
|
282 |
+
raise ValueError(
|
283 |
+
f"`callback_steps` has to be a positive integer but is {
|
284 |
+
callback_steps} of type"
|
285 |
+
f" {type(callback_steps)}."
|
286 |
+
)
|
287 |
+
|
288 |
+
if prompt is not None and prompt_embeds is not None:
|
289 |
+
raise ValueError(
|
290 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {
|
291 |
+
prompt_embeds}. Please make sure to"
|
292 |
+
" only forward one of the two."
|
293 |
+
)
|
294 |
+
elif prompt is None and prompt_embeds is None:
|
295 |
+
raise ValueError(
|
296 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
297 |
+
)
|
298 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
299 |
+
raise ValueError(
|
300 |
+
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
301 |
+
|
302 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
303 |
+
raise ValueError(
|
304 |
+
f"Cannot forward both `negative_prompt`: {
|
305 |
+
negative_prompt} and `negative_prompt_embeds`:"
|
306 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
307 |
+
)
|
308 |
+
|
309 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
310 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
311 |
+
raise ValueError(
|
312 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
313 |
+
f" got: `prompt_embeds` {
|
314 |
+
prompt_embeds.shape} != `negative_prompt_embeds`"
|
315 |
+
f" {negative_prompt_embeds.shape}."
|
316 |
+
)
|
317 |
+
|
318 |
+
# Adapted from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
319 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None):
|
320 |
+
shape = (batch_size, num_channels_latents, height //
|
321 |
+
self.vae_scale_factor, width // self.vae_scale_factor)
|
322 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
323 |
+
raise ValueError(
|
324 |
+
f"You have passed a list of generators of length {
|
325 |
+
len(generator)}, but requested an effective batch"
|
326 |
+
f" size of {
|
327 |
+
batch_size}. Make sure the batch size matches the length of the generators."
|
328 |
+
)
|
329 |
+
|
330 |
+
if latents is None:
|
331 |
+
if isinstance(generator, np.random.RandomState):
|
332 |
+
latents = generator.randn(*shape).astype(dtype)
|
333 |
+
elif isinstance(generator, torch.Generator):
|
334 |
+
latents = torch.randn(
|
335 |
+
*shape, generator=generator).numpy().astype(dtype)
|
336 |
+
else:
|
337 |
+
raise ValueError(
|
338 |
+
f"Expected `generator` to be of type `np.random.RandomState` or `torch.Generator`, but got"
|
339 |
+
f" {type(generator)}."
|
340 |
+
)
|
341 |
+
elif latents.shape != shape:
|
342 |
+
raise ValueError(f"Unexpected latents shape, got {
|
343 |
+
latents.shape}, expected {shape}")
|
344 |
+
|
345 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
346 |
+
latents = latents * np.float64(self.scheduler.init_noise_sigma)
|
347 |
+
|
348 |
+
return latents
|
349 |
+
|
350 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
|
351 |
+
def __call__(
|
352 |
+
self,
|
353 |
+
prompt: Union[str, List[str]] = "",
|
354 |
+
height: Optional[int] = None,
|
355 |
+
width: Optional[int] = None,
|
356 |
+
num_inference_steps: int = 4,
|
357 |
+
original_inference_steps: int = None,
|
358 |
+
guidance_scale: float = 8.5,
|
359 |
+
num_images_per_prompt: int = 1,
|
360 |
+
generator: Optional[Union[np.random.RandomState,
|
361 |
+
torch.Generator]] = None,
|
362 |
+
latents: Optional[np.ndarray] = None,
|
363 |
+
prompt_embeds: Optional[np.ndarray] = None,
|
364 |
+
output_type: str = "pil",
|
365 |
+
return_dict: bool = True,
|
366 |
+
callback: Optional[Callable[[int, int, np.ndarray], None]] = None,
|
367 |
+
callback_steps: int = 1,
|
368 |
+
):
|
369 |
+
r"""
|
370 |
+
Function invoked when calling the pipeline for generation.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
prompt (`Optional[Union[str, List[str]]]`, defaults to None):
|
374 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
375 |
+
instead.
|
376 |
+
height (`Optional[int]`, defaults to None):
|
377 |
+
The height in pixels of the generated image.
|
378 |
+
width (`Optional[int]`, defaults to None):
|
379 |
+
The width in pixels of the generated image.
|
380 |
+
num_inference_steps (`int`, defaults to 50):
|
381 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
382 |
+
expense of slower inference.
|
383 |
+
guidance_scale (`float`, defaults to 7.5):
|
384 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
385 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
386 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
387 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
388 |
+
usually at the expense of lower image quality.
|
389 |
+
num_images_per_prompt (`int`, defaults to 1):
|
390 |
+
The number of images to generate per prompt.
|
391 |
+
generator (`Optional[Union[np.random.RandomState, torch.Generator]]`, defaults to `None`):
|
392 |
+
A np.random.RandomState to make generation deterministic.
|
393 |
+
latents (`Optional[np.ndarray]`, defaults to `None`):
|
394 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
395 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
396 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
397 |
+
prompt_embeds (`Optional[np.ndarray]`, defaults to `None`):
|
398 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
399 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
400 |
+
output_type (`str`, defaults to `"pil"`):
|
401 |
+
The output format of the generate image. Choose between
|
402 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
403 |
+
return_dict (`bool`, defaults to `True`):
|
404 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
405 |
+
plain tuple.
|
406 |
+
callback (Optional[Callable], defaults to `None`):
|
407 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
408 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
409 |
+
callback_steps (`int`, defaults to 1):
|
410 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
411 |
+
called at every step.
|
412 |
+
guidance_rescale (`float`, defaults to 0.0):
|
413 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
414 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
415 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
416 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
417 |
+
|
418 |
+
Returns:
|
419 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
420 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
421 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
422 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
423 |
+
(nsfw) content, according to the `safety_checker`.
|
424 |
+
"""
|
425 |
+
height = height or self.unet.config["sample_size"] * \
|
426 |
+
self.vae_scale_factor
|
427 |
+
width = width or self.unet.config["sample_size"] * \
|
428 |
+
self.vae_scale_factor
|
429 |
+
|
430 |
+
# Don't need to get negative prompts due to LCM guided distillation
|
431 |
+
negative_prompt = None
|
432 |
+
negative_prompt_embeds = None
|
433 |
+
|
434 |
+
# check inputs. Raise error if not correct
|
435 |
+
self.check_inputs(
|
436 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
437 |
+
)
|
438 |
+
|
439 |
+
# define call parameters
|
440 |
+
if isinstance(prompt, str):
|
441 |
+
batch_size = 1
|
442 |
+
elif isinstance(prompt, list):
|
443 |
+
batch_size = len(prompt)
|
444 |
+
else:
|
445 |
+
batch_size = prompt_embeds.shape[0]
|
446 |
+
|
447 |
+
if generator is None:
|
448 |
+
generator = np.random.RandomState()
|
449 |
+
|
450 |
+
start_time = time.time()
|
451 |
+
prompt_embeds = self._encode_prompt(
|
452 |
+
prompt,
|
453 |
+
num_images_per_prompt,
|
454 |
+
False,
|
455 |
+
negative_prompt,
|
456 |
+
prompt_embeds=prompt_embeds,
|
457 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
458 |
+
)
|
459 |
+
encode_prompt_time = time.time() - start_time
|
460 |
+
print(f"Prompt encoding time: {encode_prompt_time:.2f}s")
|
461 |
+
|
462 |
+
# set timesteps
|
463 |
+
self.scheduler.set_timesteps(
|
464 |
+
num_inference_steps, original_inference_steps=original_inference_steps)
|
465 |
+
timesteps = self.scheduler.timesteps
|
466 |
+
|
467 |
+
latents = self.prepare_latents(
|
468 |
+
batch_size * num_images_per_prompt,
|
469 |
+
self.unet.config["in_channels"],
|
470 |
+
height,
|
471 |
+
width,
|
472 |
+
prompt_embeds.dtype,
|
473 |
+
generator,
|
474 |
+
latents,
|
475 |
+
)
|
476 |
+
|
477 |
+
bs = batch_size * num_images_per_prompt
|
478 |
+
# get Guidance Scale Embedding
|
479 |
+
w = np.full(bs, guidance_scale - 1, dtype=prompt_embeds.dtype)
|
480 |
+
w_embedding = self.get_guidance_scale_embedding(
|
481 |
+
w, embedding_dim=self.unet.config["time_cond_proj_dim"], dtype=prompt_embeds.dtype
|
482 |
+
)
|
483 |
+
|
484 |
+
# Adapted from diffusers to extend it for other runtimes than ORT
|
485 |
+
timestep_dtype = np.int64
|
486 |
+
|
487 |
+
num_warmup_steps = len(timesteps) - \
|
488 |
+
num_inference_steps * self.scheduler.order
|
489 |
+
inference_start = time.time()
|
490 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
491 |
+
timestep = np.array([t], dtype=timestep_dtype)
|
492 |
+
noise_pred = self.unet(
|
493 |
+
sample=latents,
|
494 |
+
timestep=timestep,
|
495 |
+
encoder_hidden_states=prompt_embeds,
|
496 |
+
timestep_cond=w_embedding,
|
497 |
+
)[0]
|
498 |
+
|
499 |
+
# compute the previous noisy sample x_t -> x_t-1
|
500 |
+
latents, denoised = self.scheduler.step(
|
501 |
+
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), return_dict=False
|
502 |
+
)
|
503 |
+
latents, denoised = latents.numpy(), denoised.numpy()
|
504 |
+
|
505 |
+
# call the callback, if provided
|
506 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
507 |
+
if callback is not None and i % callback_steps == 0:
|
508 |
+
callback(i, t, latents)
|
509 |
+
inference_time = time.time() - inference_start
|
510 |
+
print(f"Inference time: {inference_time:.2f}s")
|
511 |
+
|
512 |
+
decode_start = time.time()
|
513 |
+
if output_type == "latent":
|
514 |
+
image = denoised
|
515 |
+
has_nsfw_concept = None
|
516 |
+
else:
|
517 |
+
denoised /= self.vae_decoder.config["scaling_factor"]
|
518 |
+
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1
|
519 |
+
image = np.concatenate(
|
520 |
+
[self.vae_decoder(latent_sample=denoised[i: i + 1])[0]
|
521 |
+
for i in range(denoised.shape[0])]
|
522 |
+
)
|
523 |
+
# image, has_nsfw_concept = self.run_safety_checker(image)
|
524 |
+
has_nsfw_concept = None # skip safety checker
|
525 |
+
|
526 |
+
if has_nsfw_concept is None:
|
527 |
+
do_denormalize = [True] * image.shape[0]
|
528 |
+
else:
|
529 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
530 |
+
|
531 |
+
image = self.postprocess(
|
532 |
+
image, output_type=output_type, do_denormalize=do_denormalize)
|
533 |
+
decode_time = time.time() - decode_start
|
534 |
+
print(f"Decode time: {decode_time:.2f}s")
|
535 |
+
|
536 |
+
total_time = encode_prompt_time + inference_time + decode_time
|
537 |
+
print(f"Total time: {total_time:.2f}s")
|
538 |
+
|
539 |
+
if not return_dict:
|
540 |
+
return (image, has_nsfw_concept)
|
541 |
+
|
542 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
543 |
+
|
544 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/v0.22.0/src/diffusers/pipelines/latent_consistency/pipeline_latent_consistency.py#L264
|
545 |
+
|
546 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=None):
|
547 |
+
"""
|
548 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
549 |
+
|
550 |
+
Args:
|
551 |
+
timesteps (`torch.Tensor`):
|
552 |
+
generate embedding vectors at these timesteps
|
553 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
554 |
+
dimension of the embeddings to generate
|
555 |
+
dtype:
|
556 |
+
data type of the generated embeddings
|
557 |
+
|
558 |
+
Returns:
|
559 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
560 |
+
"""
|
561 |
+
w = w * 1000
|
562 |
+
half_dim = embedding_dim // 2
|
563 |
+
emb = np.log(10000.0) / (half_dim - 1)
|
564 |
+
emb = np.exp(np.arange(half_dim, dtype=dtype) * -emb)
|
565 |
+
emb = w[:, None] * emb[None, :]
|
566 |
+
emb = np.concatenate([np.sin(emb), np.cos(emb)], axis=1)
|
567 |
+
|
568 |
+
if embedding_dim % 2 == 1: # zero pad
|
569 |
+
emb = np.pad(emb, [(0, 0), (0, 1)])
|
570 |
+
|
571 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
572 |
+
return emb
|
573 |
+
|
574 |
+
|
575 |
+
def get_max_filename_length():
|
576 |
+
if platform.system() == 'Windows':
|
577 |
+
return get_max_filename_length_windows()
|
578 |
+
elif platform.system() in ['Linux', 'Darwin']: # Darwin is for MacOS
|
579 |
+
return get_max_filename_length_unix()
|
580 |
+
else:
|
581 |
+
raise Exception(f"Unsupported operating system: {platform.system()}")
|
582 |
+
|
583 |
+
|
584 |
+
def get_max_filename_length_windows():
|
585 |
+
try:
|
586 |
+
max_length = os.path.getconf('PC_NAME_MAX')
|
587 |
+
print(
|
588 |
+
f"The maximum file name length on Windows is: {max_length} characters.")
|
589 |
+
return max_length
|
590 |
+
except Exception as e:
|
591 |
+
print(f"An error occurred: {e}")
|
592 |
+
|
593 |
+
|
594 |
+
def get_max_filename_length_unix():
|
595 |
+
try:
|
596 |
+
max_length = os.pathconf('/', 'PC_NAME_MAX')
|
597 |
+
return max_length
|
598 |
+
except Exception as e:
|
599 |
+
print(f"An error occurred: {e}")
|
600 |
+
|
601 |
+
|
602 |
+
def get_image_path(args, **override_kwargs):
|
603 |
+
""" mkdir output folder and encode metadata in the filename
|
604 |
+
"""
|
605 |
+
out_folder = os.path.join(args.o, "_".join(
|
606 |
+
args.prompt.replace("/", "_").rsplit(" ")))
|
607 |
+
max_length = get_max_filename_length()
|
608 |
+
if len(out_folder) > max_length:
|
609 |
+
out_folder = out_folder[:max_length]
|
610 |
+
os.makedirs(out_folder, exist_ok=True)
|
611 |
+
|
612 |
+
out_fname = f"randomSeed_{override_kwargs.get('seed', None) or args.seed}"
|
613 |
+
|
614 |
+
out_fname += f"_LCM_"
|
615 |
+
out_fname += f"_numInferenceSteps{override_kwargs.get(
|
616 |
+
'num_inference_steps', None) or args.num_inference_steps}"
|
617 |
+
|
618 |
+
return os.path.join(out_folder, out_fname + ".png")
|
619 |
+
|
620 |
+
|
621 |
+
def prepare_controlnet_cond(image_path, height, width):
|
622 |
+
image = Image.open(image_path).convert("RGB")
|
623 |
+
image = image.resize((height, width), resample=Image.LANCZOS)
|
624 |
+
image = np.array(image).transpose(2, 0, 1) / 255.0
|
625 |
+
return image
|
626 |
+
|
627 |
+
|
628 |
+
def main(args):
|
629 |
+
logger.info(f"Setting random seed to {args.seed}")
|
630 |
+
|
631 |
+
# load scheduler from /scheduler/scheduler_config.json
|
632 |
+
scheduler_config_path = os.path.join(
|
633 |
+
args.i, "scheduler/scheduler_config.json")
|
634 |
+
with open(scheduler_config_path, "r") as f:
|
635 |
+
scheduler_config = json.load(f)
|
636 |
+
user_specified_scheduler = LCMScheduler.from_config(scheduler_config)
|
637 |
+
|
638 |
+
print("user_specified_scheduler", user_specified_scheduler)
|
639 |
+
|
640 |
+
pipe = RKNN2LatentConsistencyPipeline(
|
641 |
+
text_encoder=RKNN2Model(os.path.join(args.i, "text_encoder")),
|
642 |
+
unet=RKNN2Model(os.path.join(args.i, "unet")),
|
643 |
+
vae_decoder=RKNN2Model(os.path.join(args.i, "vae_decoder")),
|
644 |
+
scheduler=user_specified_scheduler,
|
645 |
+
tokenizer=CLIPTokenizer.from_pretrained(
|
646 |
+
"openai/clip-vit-base-patch16"),
|
647 |
+
)
|
648 |
+
|
649 |
+
logger.info("Beginning image generation.")
|
650 |
+
image = pipe(
|
651 |
+
prompt=args.prompt,
|
652 |
+
height=int(args.size.split("x")[0]),
|
653 |
+
width=int(args.size.split("x")[1]),
|
654 |
+
num_inference_steps=args.num_inference_steps,
|
655 |
+
guidance_scale=args.guidance_scale,
|
656 |
+
generator=np.random.RandomState(args.seed),
|
657 |
+
)
|
658 |
+
|
659 |
+
out_path = get_image_path(args)
|
660 |
+
logger.info(f"Saving generated image to {out_path}")
|
661 |
+
image["images"][0].save(out_path)
|
662 |
+
|
663 |
+
|
664 |
+
if __name__ == "__main__":
|
665 |
+
parser = argparse.ArgumentParser()
|
666 |
+
|
667 |
+
parser.add_argument(
|
668 |
+
"--prompt",
|
669 |
+
required=True,
|
670 |
+
help="The text prompt to be used for text-to-image generation.")
|
671 |
+
parser.add_argument(
|
672 |
+
"-i",
|
673 |
+
required=True,
|
674 |
+
help=("Path to model directory"))
|
675 |
+
parser.add_argument("-o", required=True)
|
676 |
+
parser.add_argument("--seed",
|
677 |
+
default=93,
|
678 |
+
type=int,
|
679 |
+
help="Random seed to be able to reproduce results")
|
680 |
+
parser.add_argument(
|
681 |
+
"-s",
|
682 |
+
"--size",
|
683 |
+
default="256x256",
|
684 |
+
type=str,
|
685 |
+
help="Image size")
|
686 |
+
parser.add_argument(
|
687 |
+
"--num-inference-steps",
|
688 |
+
default=4,
|
689 |
+
type=int,
|
690 |
+
help="The number of iterations the unet model will be executed throughout the reverse diffusion process")
|
691 |
+
parser.add_argument(
|
692 |
+
"--guidance-scale",
|
693 |
+
default=7.5,
|
694 |
+
type=float,
|
695 |
+
help="Controls the influence of the text prompt on sampling process (0=random images)")
|
696 |
+
|
697 |
+
args = parser.parse_args()
|
698 |
+
main(args)
|