Github repo: https://github.com/magic-research/piecewise-rectified-flow
PeRFlow accelerated SDXL-DreamShaper: https://huggingface.co/Lykon/dreamshaper-xl-1-0
Demo:
import random, os
import numpy as np
from pathlib import Path
import torch, torchvision
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
Path("demo").mkdir(parents=True, exist_ok=True)
from diffusers import StableDiffusionXLPipeline
pipe = StableDiffusionXLPipeline.from_pretrained("hansyan/perflow-sdxl-dreamshaper", torch_dtype=torch.float16, use_safetensors=True, variant="v0-fix")
from src.scheduler_perflow import PeRFlowScheduler
pipe.scheduler = PeRFlowScheduler.from_config(pipe.scheduler.config, prediction_type="ddim_eps", num_time_windows=4)
pipe.to("cuda", torch.float16)
prompts_list = [
["photorealistic, uhd, high resolution, high quality, highly detailed; RAW photo, a handsome man, wearing a black coat, outside, closeup face",
"distorted, blur, low-quality, haze, out of focus",],
["photorealistic, uhd, high resolution, high quality, highly detailed; masterpiece, A closeup face photo of girl, wearing a rain coat, in the street, heavy rain, bokeh,",
"distorted, blur, low-quality, haze, out of focus",],
["photorealistic, uhd, high resolution, high quality, highly detailed; RAW photo, a red luxury car, studio light",
"distorted, blur, low-quality, haze, out of focus",],
["photorealistic, uhd, high resolution, high quality, highly detailed; masterpiece, A beautiful cat bask in the sun",
"distorted, blur, low-quality, haze, out of focus",],
]
num_inference_steps = 6 # suggest steps >= num_win=4
cfg_scale_list = [2.0] # suggest values [1.5, 2.0, 2.5]
num_img = 2
seed = 42
for cfg_scale in cfg_scale_list:
for i, prompts in enumerate(prompts_list):
setup_seed(seed)
prompt, neg_prompt = prompts[0], prompts[1]
samples = pipe(
prompt = [prompt] * num_img,
negative_prompt = [neg_prompt] * num_img,
height = 1024,
width = 1024,
num_inference_steps = num_inference_steps,
guidance_scale = cfg_scale,
output_type = 'pt',
).images
cfg_int = int(cfg_scale); cfg_float = int(cfg_scale*10 - cfg_int*10)
save_name = f'step_{num_inference_steps}_txt{i+1}_cfg{cfg_int}-{cfg_float}.png'
torchvision.utils.save_image(torchvision.utils.make_grid(samples, nrow = num_img), os.path.join("demo", save_name))
- Downloads last month
- 143
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.