hanslab37's picture
Training in progress, epoch 0
e3f8208 verified
|
raw
history blame
2.95 kB
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: architectural_styles_classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7252427184466019

architectural_styles_classifier

This model is a fine-tuned version of nvidia/mit-b0 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0414
  • Accuracy: 0.7252

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=0.0003
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7073 1.0 442 1.7346 0.4571
1.737 2.0 884 1.6044 0.4873
1.4039 3.0 1326 1.4456 0.5454
1.222 4.0 1768 1.3590 0.5886
1.2037 5.0 2210 1.2178 0.6119
1.2368 6.0 2652 1.2507 0.6189
1.118 7.0 3094 1.1823 0.6337
0.9895 8.0 3536 1.1384 0.6392
0.8918 9.0 3978 1.1026 0.6586
0.6114 10.0 4420 1.1647 0.6447
0.9911 11.0 4862 1.0066 0.6749
0.6572 12.0 5304 1.0767 0.6854
0.6302 13.0 5746 1.0383 0.6908
0.638 14.0 6188 1.0830 0.6963
0.4971 15.0 6630 1.0871 0.6913
0.4579 16.0 7072 1.1098 0.6978
0.5697 17.0 7514 1.1443 0.7012
0.3527 18.0 7956 1.1090 0.7047
0.3721 19.0 8398 1.1116 0.7141
0.2936 20.0 8840 1.1248 0.7181

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1