YAML Metadata
Error:
"datasets[0]" with value "https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset" is not valid. If possible, use a dataset id from https://hf.co/datasets.
Overview
The model is a roberta-base
fine-tuned on fake-and-real-news-dataset. It has a 100% accuracy on that dataset.
The model takes a news article and predicts if it is true or fake.
The format of the input should be:
<title> TITLE HERE <content> CONTENT HERE <end>
Using this model in your code
To use this model, first download it from the hugginface website:
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("hamzab/roberta-fake-news-classification")
model = AutoModelForSequenceClassification.from_pretrained("hamzab/roberta-fake-news-classification")
Then, make a prediction like follows:
import torch
def predict_fake(title,text):
input_str = "<title>" + title + "<content>" + text + "<end>"
input_ids = tokenizer.encode_plus(input_str, max_length=512, padding="max_length", truncation=True, return_tensors="pt")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
with torch.no_grad():
output = model(input_ids["input_ids"].to(device), attention_mask=input_ids["attention_mask"].to(device))
return dict(zip(["Fake","Real"], [x.item() for x in list(torch.nn.Softmax()(output.logits)[0])] ))
print(predict_fake(<HEADLINE-HERE>,<CONTENT-HERE>))
You can also use Gradio to test the model on real-time:
import gradio as gr
iface = gr.Interface(fn=predict_fake, inputs=[gr.inputs.Textbox(lines=1,label="headline"),gr.inputs.Textbox(lines=6,label="content")], outputs="label").launch(share=True)
- Downloads last month
- 6,326
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.