File size: 2,724 Bytes
f99d3de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
- generated_from_trainer
datasets:
- kajuma/training_01-09_patch
model-index:
- name: scratch_adamw_phase_1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scratch_adamw_phase_1
This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the kajuma/training_01-09_patch dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1315
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 1000
- training_steps: 11000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.4162 | 0.0439 | 500 | 1.4265 |
| 1.3632 | 0.0878 | 1000 | 1.3825 |
| 1.3563 | 0.1317 | 1500 | 1.3339 |
| 1.2638 | 0.1755 | 2000 | 1.3033 |
| 1.2974 | 0.2194 | 2500 | 1.2802 |
| 1.3333 | 0.2633 | 3000 | 1.2623 |
| 1.254 | 0.3072 | 3500 | 1.2466 |
| 1.2591 | 0.3511 | 4000 | 1.2318 |
| 1.2091 | 0.3950 | 4500 | 1.2186 |
| 1.2803 | 0.4388 | 5000 | 1.2060 |
| 1.222 | 0.4827 | 5500 | 1.1942 |
| 1.2236 | 0.5266 | 6000 | 1.1826 |
| 1.1148 | 0.5705 | 6500 | 1.1723 |
| 1.2086 | 0.6144 | 7000 | 1.1626 |
| 1.1524 | 0.6583 | 7500 | 1.1542 |
| 1.1177 | 0.7022 | 8000 | 1.1471 |
| 1.1894 | 0.7460 | 8500 | 1.1417 |
| 1.1384 | 0.7899 | 9000 | 1.1379 |
| 1.1379 | 0.8338 | 9500 | 1.1350 |
| 1.1464 | 0.8777 | 10000 | 1.1333 |
| 1.1579 | 0.9216 | 10500 | 1.1322 |
| 1.144 | 0.9655 | 11000 | 1.1315 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|