File size: 2,724 Bytes
f99d3de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: HuggingFaceTB/SmolLM2-360M
tags:
- generated_from_trainer
datasets:
- kajuma/training_01-09_patch
model-index:
- name: scratch_adamw_phase_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# scratch_adamw_phase_1

This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on the kajuma/training_01-09_patch dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1315

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_steps: 1000
- training_steps: 11000

### Training results

| Training Loss | Epoch  | Step  | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 1.4162        | 0.0439 | 500   | 1.4265          |
| 1.3632        | 0.0878 | 1000  | 1.3825          |
| 1.3563        | 0.1317 | 1500  | 1.3339          |
| 1.2638        | 0.1755 | 2000  | 1.3033          |
| 1.2974        | 0.2194 | 2500  | 1.2802          |
| 1.3333        | 0.2633 | 3000  | 1.2623          |
| 1.254         | 0.3072 | 3500  | 1.2466          |
| 1.2591        | 0.3511 | 4000  | 1.2318          |
| 1.2091        | 0.3950 | 4500  | 1.2186          |
| 1.2803        | 0.4388 | 5000  | 1.2060          |
| 1.222         | 0.4827 | 5500  | 1.1942          |
| 1.2236        | 0.5266 | 6000  | 1.1826          |
| 1.1148        | 0.5705 | 6500  | 1.1723          |
| 1.2086        | 0.6144 | 7000  | 1.1626          |
| 1.1524        | 0.6583 | 7500  | 1.1542          |
| 1.1177        | 0.7022 | 8000  | 1.1471          |
| 1.1894        | 0.7460 | 8500  | 1.1417          |
| 1.1384        | 0.7899 | 9000  | 1.1379          |
| 1.1379        | 0.8338 | 9500  | 1.1350          |
| 1.1464        | 0.8777 | 10000 | 1.1333          |
| 1.1579        | 0.9216 | 10500 | 1.1322          |
| 1.144         | 0.9655 | 11000 | 1.1315          |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0