YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Radiology Image Captioning Model
Lightweight CNN+Transformer trained on eltorio/ROCO-radiology.
Usage
This is a custom PyTorch model. To load it, you would typically do the following:
from tokenizers import Tokenizer
import torch
# (Define your ImageCaptioningModel class as used during training)
# from my_model_definition import ImageCaptioningModel # if saved separately
tokenizer = Tokenizer.from_file('hackergeek/radiology-image-captioning/vocab.json')
config = json.load(open('hackergeek/radiology-image-captioning/config.json'))
# model = ImageCaptioningModel(vocab_size=config['vocab_size'], embed_dim=config['embed_dim'])
# model.load_state_dict(torch.load('hackergeek/radiology-image-captioning/pytorch_model.bin', map_location='cpu'))
# model.eval()
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support