Edit model card

Unam_tesis_beto_finnetuning: Unam's thesis classification with BETO

This model is created from the finetuning of the pre-model for Spanish BETO, using PyTorch framework, and trained with a set of theses of the National Autonomous University of Mexico (UNAM). The model classifies a text into for five (Psicología, Derecho, Química Farmacéutico Biológica, Actuaría, Economía) possible careers at the UNAM.

Training Dataset

1000 documents (Thesis introduction, Author´s first name, Author´s last name, Thesis title, Year, Career)

Careers Size
Actuaría 200
Derecho 200
Economía 200
Psicología 200
Química Farmacéutico Biológica 200

Example of use

For further details on how to use unam_tesis_BETO_finnetuning you can visit the Hugging Face Transformers library, starting with the Quickstart section. The UNAM tesis model can be accessed simply as 'hackathon-pln-e/unam_tesis_BETO_finnetuning' by using the Transformers library. An example of how to download and use the model can be found next.


 tokenizer = AutoTokenizer.from_pretrained('hiiamsid/BETO_es_binary_classification', use_fast=False)
 model = AutoModelForSequenceClassification.from_pretrained(
                   'hackathon-pln-es/unam_tesis_BETO_finnetuning', num_labels=5, output_attentions=False,
                  output_hidden_states=False)
 pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
 
 classificationResult = pipe("Análisis de las condiciones del aprendizaje desde casa en los alumnos de preescolar y primaria del municipio de Nicolás Romero")

Citation

To cite this resource in a publication please use the following:

[UNAM's Tesis with BETO finetuning classify] (https://huggingface.co/hackathon-pln-es/unam_tesis_BETO_finnetuning)

To cite this resource in a publication please use the following:

@inproceedings{SpanishNLPHackaton2022,
  title={UNAM's Theses with BETO fine-tuning classify},
  author={López López, Isaac Isaías; Clavel Quintero, Yisel; López Ramos, Dionis & López López, Ximena Yeraldin},
  booktitle={Somos NLP Hackaton 2022},
  year={2022}
}

Team members

  • Isaac Isaías López López (MajorIsaiah)
  • Dionis López Ramos (inoid)
  • Yisel Clavel Quintero (clavel)
  • Ximena Yeraldin López López (Ximyer)
Downloads last month
61
Hosted inference API
Text Classification
Examples
Examples
This model can be loaded on the Inference API on-demand.

Space using hackathon-pln-es/unam_tesis_BETO_finnetuning