File size: 3,306 Bytes
44ac4e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
base_model: openai/clip-vit-base-patch32
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ktp-kk-crop
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.945054945054945
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ktp-kk-crop

This model is a fine-tuned version of [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2528
- Accuracy: 0.9451

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log        | 0.9655  | 7    | 0.5985          | 0.6154   |
| No log        | 1.9310  | 14   | 0.1681          | 0.9341   |
| 0.4711        | 2.8966  | 21   | 0.2271          | 0.9011   |
| 0.4711        | 4.0     | 29   | 0.8009          | 0.7473   |
| 0.3768        | 4.9655  | 36   | 0.1365          | 0.9560   |
| 0.3768        | 5.9310  | 43   | 0.1176          | 0.9780   |
| 0.069         | 6.8966  | 50   | 0.0880          | 0.9890   |
| 0.069         | 8.0     | 58   | 0.6839          | 0.9011   |
| 0.0212        | 8.9655  | 65   | 0.3376          | 0.9451   |
| 0.0212        | 9.9310  | 72   | 0.2240          | 0.9670   |
| 0.0201        | 10.8966 | 79   | 0.5612          | 0.9341   |
| 0.0201        | 12.0    | 87   | 0.2688          | 0.9560   |
| 0.0039        | 12.9655 | 94   | 0.1710          | 0.9780   |
| 0.0039        | 13.9310 | 101  | 0.3437          | 0.9560   |
| 0.0293        | 14.8966 | 108  | 0.2446          | 0.9670   |
| 0.0293        | 16.0    | 116  | 0.1507          | 0.9780   |
| 0.0009        | 16.9655 | 123  | 0.2032          | 0.9670   |
| 0.0009        | 17.9310 | 130  | 0.2481          | 0.9451   |
| 0.0           | 18.8966 | 137  | 0.2608          | 0.9451   |
| 0.0           | 20.0    | 145  | 0.2611          | 0.9451   |
| 0.0           | 20.9655 | 152  | 0.2579          | 0.9451   |
| 0.0           | 21.9310 | 159  | 0.2554          | 0.9451   |
| 0.0           | 22.8966 | 166  | 0.2536          | 0.9451   |
| 0.0           | 24.0    | 174  | 0.2528          | 0.9451   |
| 0.0           | 24.1379 | 175  | 0.2528          | 0.9451   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1