File size: 34,821 Bytes
1fcde9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
import torch.nn as nn
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP
from typing import Optional, Tuple, Union, Any, Dict, List
from transformers import Seq2SeqTrainer, GPT2LMHeadModel
from torch.utils.data.distributed import DistributedSampler
import torch
from transformers.deepspeed import is_deepspeed_zero3_enabled
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.generation.utils import GreedySearchOutput, GreedySearchEncoderDecoderOutput, BeamSearchOutput, BeamSearchEncoderDecoderOutput
from transformers.generation.beam_search import BeamScorer

try:
    from torch_geometric.loader import DataLoader
    from torch_geometric.data import Dataset
except ImportError:  
    raise Exception('You need to install torch geometric and its dependecies to use this model please refer to https://pytorch-geometric.readthedocs.io/en/latest/install/installation.html')

class _GPT2LMHeadModel(GPT2LMHeadModel):
    def _init_(self, config):
        super(GPT2LMHeadModel, self).init_(config)
        self.config = config
    
    
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, encoder_outputs=None, **kwargs):
        '''
        This function is an edited version of the prepare_inputs_for_generation function from HuggingFace's transformers 
        https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
        '''
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -1].unsqueeze(-1)

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)
        if self.config.prot2text_version=="1.1" or self.config.prot2text_version=="1.2":
            encoder_attention_mask = kwargs.get("encoder_attention_mask", None)
        elif self.config.prot2text_version=="1.0":
            encoder_attention_mask = None

        if attention_mask is not None and position_ids is None:
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        model_specific_kwargs = {
            "encoder_hidden_states": encoder_outputs['hidden_states'],
        }
        
        return {
            "input_ids": input_ids,
            "past_key_values": past_key_values,
            "use_cache": kwargs.get("use_cache"),
            "position_ids": position_ids,
            "attention_mask": attention_mask,
            "token_type_ids": token_type_ids,
            "encoder_attention_mask": encoder_attention_mask,
            **model_specific_kwargs
        }
    
     
    def greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
    ) -> Union[GreedySearchOutput, torch.LongTensor]:
        '''
        This function is an edited version of the greedy_search function from HuggingFace's transformers 
        https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
        '''
        
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # keep track of which sequences are already finished
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_tokens_scores = logits_processor(input_ids, next_token_logits)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_tokens_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # argmax
            next_tokens = torch.argmax(next_tokens_scores, dim=-1)

            # finished sentences should have their next token be a padding token
            if eos_token_id is not None:
                if pad_token_id is None:
                    raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
                next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)

            # update generated ids, model inputs, and length for next step
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            if streamer is not None:
                streamer.put(next_tokens.cpu())
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

            # if eos_token was found in one sentence, set sentence to finished
            if eos_token_id_tensor is not None:
                unfinished_sequences = unfinished_sequences.mul(
                    next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
                )

                # stop when each sentence is finished
                if unfinished_sequences.max() == 0:
                    this_peer_finished = True

            # stop if we exceed the maximum length
            try:
                if stopping_criteria(input_ids, scores):
                    this_peer_finished = True
            except:
                if all(stopping_criteria(input_ids, scores)):
                    this_peer_finished = True

            if this_peer_finished and not synced_gpus:
                break

        if streamer is not None:
            streamer.end()

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return GreedySearchEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return GreedySearchDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return input_ids
        
    def _greedy_search(
        self,
        input_ids: torch.LongTensor,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        streamer: Optional["BaseStreamer"] = None,
        **model_kwargs,
    ) -> Union[GreedySearchOutput, torch.LongTensor]:
        
        return self.greedy_search(
                            input_ids,
                            logits_processor,
                            stopping_criteria,
                            max_length,
                            pad_token_id,
                            eos_token_id,
                            output_attentions,
                            output_hidden_states,
                            output_scores,
                            return_dict_in_generate,
                            synced_gpus,
                            streamer,
                            **model_kwargs,
                            )
    def _beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        
        return self.beam_search(
                input_ids,
                beam_scorer,
                logits_processor,
                stopping_criteria,
                max_length,
                pad_token_id,
                eos_token_id,
                output_attentions,
                output_hidden_states,
                output_scores,
                return_dict_in_generate,
                synced_gpus,
                **model_kwargs,
            )
        
    def beam_search(
        self,
        input_ids: torch.LongTensor,
        beam_scorer: BeamScorer,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        max_length: Optional[int] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_scores: Optional[bool] = None,
        return_dict_in_generate: Optional[bool] = None,
        synced_gpus: bool = False,
        **model_kwargs,
    ) -> Union[BeamSearchOutput, torch.LongTensor]:
        '''
        This function is an edited version of the beam_search function from HuggingFace's transformers 
        https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
        '''
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
        if max_length is not None:
            warnings.warn(
                "`max_length` is deprecated in this function, use"
                " `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
                UserWarning,
            )
            stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
        if len(stopping_criteria) == 0:
            warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
        pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]
        output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
        output_attentions = (
            output_attentions if output_attentions is not None else self.generation_config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate
            if return_dict_in_generate is not None
            else self.generation_config.return_dict_in_generate
        )

        batch_size = len(beam_scorer._beam_hyps)
        num_beams = beam_scorer.num_beams

        batch_beam_size, cur_len = input_ids.shape

        if num_beams * batch_size != batch_beam_size:
            raise ValueError(
                f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
            )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        beam_indices = (
            tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
        )
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        cross_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
        # of the first beam are considered to avoid sampling the exact same tokens across all beams.
        beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view((batch_size * num_beams,))

        this_peer_finished = False  # used by synced_gpus only
        while True:
            if synced_gpus:
                # Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
                # The following logic allows an early break if all peers finished generating their sequence
                this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
                # send 0.0 if we finished, 1.0 otherwise
                dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
                # did all peers finish? the reduced sum will be 0.0 then
                if this_peer_finished_flag.item() == 0.0:
                    break

            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )

            if synced_gpus and this_peer_finished:
                cur_len = cur_len + 1
                continue  # don't waste resources running the code we don't need

            next_token_logits = outputs.logits[:, -1, :]
            # hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
            # cannot be generated both before and after the `nn.functional.log_softmax` operation.
            # next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
            next_token_scores = nn.functional.log_softmax(
                next_token_logits, dim=-1
            )  # (batch_size * num_beams, vocab_size)

            next_token_scores_processed = logits_processor(input_ids, next_token_scores)
            # next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(next_token_scores)
            next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
                next_token_scores_processed
            )

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores_processed,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
                    )
                    if self.config.is_encoder_decoder:
                        cross_attentions += (outputs.cross_attentions,)

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # reshape for beam search
            vocab_size = next_token_scores.shape[-1]
            next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)

                

            # Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
            next_token_scores, next_tokens = torch.topk(
                next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
            )

            next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
            next_tokens = next_tokens % vocab_size

            # stateless
            beam_outputs = beam_scorer.process(
                input_ids,
                next_token_scores,
                next_tokens,
                next_indices,
                pad_token_id=pad_token_id,
                eos_token_id=eos_token_id,
                beam_indices=beam_indices,
            )

            beam_scores = beam_outputs["next_beam_scores"]
            beam_next_tokens = beam_outputs["next_beam_tokens"]
            beam_idx = beam_outputs["next_beam_indices"]

            input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)

            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )
            if model_kwargs["past_key_values"] is not None:
                model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)

            if return_dict_in_generate and output_scores:
                beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))

            # increase cur_len
            cur_len = cur_len + 1

            try:
                if beam_scorer.is_done or stopping_criteria(input_ids, scores):
                    if not synced_gpus:
                        break
                    else:
                        this_peer_finished = True
            except:
                if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
                    if not synced_gpus:
                        break
                    else:
                        this_peer_finished = True
                

        sequence_outputs = beam_scorer.finalize(
            input_ids,
            beam_scores,
            next_tokens,
            next_indices,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            max_length=stopping_criteria.max_length,
            beam_indices=beam_indices,
        )

        if return_dict_in_generate:
            if not output_scores:
                sequence_outputs["sequence_scores"] = None

            if self.config.is_encoder_decoder:
                return BeamSearchEncoderDecoderOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    cross_attentions=cross_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return BeamSearchDecoderOnlyOutput(
                    sequences=sequence_outputs["sequences"],
                    sequences_scores=sequence_outputs["sequence_scores"],
                    scores=scores,
                    beam_indices=sequence_outputs["beam_indices"],
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return sequence_outputs["sequences"]
    

class CABlock(nn.Module):
    '''
        This function is an edited version of the gpt2 decoder block function from HuggingFace's transformers 
        https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
        '''
    def __init__(self, config, layer_idx=None):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
        self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = GPT2MLP(inner_dim, config)

    def forward(
        self,
        hidden_states: Optional[Tuple[torch.FloatTensor]],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
        

        residual = hidden_states
        hidden_states = self.ln_cross_attn(hidden_states)
        cross_attn_outputs = self.crossattention(
            hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
        )
        attn_output = cross_attn_outputs[0]
        # residual connection
        hidden_states = residual + attn_output

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        return (hidden_states,)
    
class Prot2TextTrainer(Seq2SeqTrainer):
    '''
    This function is an edited version of the Seq2SeqTrainer from HuggingFace's transformers 
    '''
    def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
        if self.args.world_size > 1:
            eval_sampler = DistributedSampler(self.eval_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
        else:
            eval_sampler = None
        return DataLoader(
            self.eval_dataset,
            batch_size=self.args.eval_batch_size,
            collate_fn=None,
            num_workers=self.args.dataloader_num_workers,
            pin_memory=self.args.dataloader_pin_memory,
            sampler=eval_sampler,
        )
    def get_train_dataloader(self) -> DataLoader:
        if self.args.world_size > 1:
            train_sampler = DistributedSampler(self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
        else:
            train_sampler = None
        return DataLoader(
            self.train_dataset,
            batch_size=self.args.per_device_train_batch_size,
            collate_fn=None,
            num_workers=self.args.dataloader_num_workers,
            pin_memory=self.args.dataloader_pin_memory,
            sampler=train_sampler,
        )
    def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
        """
        Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
        handling potential state.
        """
        inputs = self._prepare_input(inputs)
        if len(inputs) == 0:
            raise ValueError(
                "The batch received was empty, your model won't be able to train on it. Double-check that your "
                f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
            )
        if self.args.past_index >= 0 and self._past is not None:
            inputs["mems"] = self._past
        
        inputs = inputs.to_dict()
        inputs['edge_type'] =  torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
        inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
        inputs = {k: v.to(device=self.args.device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
        return inputs
    
    def prediction_step(
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
        ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on `model` using `inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to evaluate.
            inputs (`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
            labels (each being optional).
        """

        if not self.args.predict_with_generate or prediction_loss_only:
            return super().prediction_step(
                model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
            )

        has_labels = "labels" in inputs
        inputs = self._prepare_inputs(inputs)

        # XXX: adapt synced_gpus for fairscale as well
        gen_kwargs = self._gen_kwargs.copy()
        if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
            gen_kwargs["max_length"] = self.model.config.max_length
        gen_kwargs["num_beams"] = (
            gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
        )
        default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
        gen_kwargs["synced_gpus"] = (
            gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
        )

        if "attention_mask" in inputs:
            gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
        if "global_attention_mask" in inputs:
            gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)

        generation_inputs = None
        gen_kwargs['x'] = inputs.get('x', None)
        gen_kwargs['edge_index'] = inputs.get('edge_index', None)
        gen_kwargs['edge_type'] = inputs.get('edge_type', None)
        gen_kwargs['batch'] = inputs.get('batch', None)
        gen_kwargs['encoder_input_ids'] = inputs.get('encoder_input_ids', None)
        gen_kwargs['decoder_input_ids'] = inputs.get('decoder_input_ids', None)[:,0:1]
        gen_kwargs["decoder_attention_mask"] = torch.ones(gen_kwargs['decoder_input_ids'].shape[0], 1).to(self.args.device)

        generated_tokens = self.model.generate(
            generation_inputs,
            **gen_kwargs,
        )
        # in case the batch is shorter than max length, the output should be padded
        if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
            generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
        elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
            gen_kwargs["max_new_tokens"] + 1
        ):
            generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)

        with torch.no_grad():
            if has_labels:
                with self.compute_loss_context_manager():
                    outputs = model(**inputs)
                if self.label_smoother is not None:
                    loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
                else:
                    loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
            else:
                loss = None

        if self.args.prediction_loss_only:
            return (loss, None, None)

        if has_labels:
            labels = inputs["labels"]
            if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
                labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
            elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
                gen_kwargs["max_new_tokens"] + 1
            ):
                labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
        else:
            labels = None

        return (loss, generated_tokens, labels)