File size: 16,124 Bytes
acb2900 c033bc7 acb2900 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""Utilities for converting Graphein Networks to Geometric Deep Learning formats.
"""
# %%
# Graphein
# Author: Kexin Huang, Arian Jamasb <arian@jamasb.io>
# License: MIT
# Project Website: https://github.com/a-r-j/graphein
# Code Repository: https://github.com/a-r-j/graphein
from __future__ import annotations
from typing import List, Optional
import networkx as nx
import numpy as np
import torch
try:
from graphein.utils.dependencies import import_message
except ImportError:
raise Exception('You need to install graphein from source in addition to DSSP to use this model please refer to https://github.com/a-r-j/graphein and https://ssbio.readthedocs.io/en/latest/instructions/dssp.html')
try:
import torch_geometric
from torch_geometric.data import Data
except ImportError:
import_message(
submodule="graphein.ml.conversion",
package="torch_geometric",
pip_install=True,
conda_channel="rusty1s",
)
try:
import dgl
except ImportError:
import_message(
submodule="graphein.ml.conversion",
package="dgl",
pip_install=True,
conda_channel="dglteam",
)
try:
import jax.numpy as jnp
except ImportError:
import_message(
submodule="graphein.ml.conversion",
package="jax",
pip_install=True,
conda_channel="conda-forge",
)
try:
import jraph
except ImportError:
import_message(
submodule="graphein.ml.conversion",
package="jraph",
pip_install=True,
conda_channel="conda-forge",
)
SUPPORTED_FORMATS = ["nx", "pyg", "dgl", "jraph"]
"""Supported conversion formats.
``"nx"``: NetworkX graph
``"pyg"``: PyTorch Geometric Data object
``"dgl"``: DGL graph
``"Jraph"``: Jraph GraphsTuple
"""
SUPPORTED_VERBOSITY = ["gnn", "default", "all_info"]
"""Supported verbosity levels for preserving graph features in conversion."""
class GraphFormatConvertor:
"""
Provides conversion utilities between NetworkX Graphs and geometric deep learning library destination formats.
Currently, we provide support for converstion from ``nx.Graph`` to ``dgl.DGLGraph`` and ``pytorch_geometric.Data``. Supported conversion
formats can be retrieved from :const:`~graphein.ml.conversion.SUPPORTED_FORMATS`.
:param src_format: The type of graph you'd like to convert from. Supported formats are available in :const:`~graphein.ml.conversion.SUPPORTED_FORMATS`
:type src_format: Literal["nx", "pyg", "dgl", "jraph"]
:param dst_format: The type of graph format you'd like to convert to. Supported formats are available in:
``graphein.ml.conversion.SUPPORTED_FORMATS``
:type dst_format: Literal["nx", "pyg", "dgl", "jraph"]
:param verbose: Select from ``"gnn"``, ``"default"``, ``"all_info"`` to determine how much information is preserved (features)
as some are unsupported by various downstream frameworks
:type verbose: graphein.ml.conversion.SUPPORTED_VERBOSITY
:param columns: List of columns in the node features to retain
:type columns: List[str], optional
"""
def __init__(
self,
src_format: str,
dst_format: str,
verbose: SUPPORTED_VERBOSITY = "gnn",
columns: Optional[List[str]] = None,
):
if (src_format not in SUPPORTED_FORMATS) or (
dst_format not in SUPPORTED_FORMATS
):
raise ValueError(
"Please specify from supported format, "
+ "/".join(SUPPORTED_FORMATS)
)
self.src_format = src_format
self.dst_format = dst_format
# supported_verbose_format = ["gnn", "default", "all_info"]
if (columns is None) and (verbose not in SUPPORTED_VERBOSITY):
raise ValueError(
"Please specify the supported verbose mode ("
+ "/".join(SUPPORTED_VERBOSITY)
+ ") or specify column names!"
)
if columns is None:
if verbose == "gnn":
columns = [
"edge_index",
"coords",
"dist_mat",
"name",
"node_id",
]
elif verbose == "default":
columns = [
"b_factor",
"chain_id",
"coords",
"dist_mat",
"edge_index",
"kind",
"name",
"node_id",
"residue_name",
]
elif verbose == "all_info":
columns = [
"atom_type",
"b_factor",
"chain_id",
"chain_ids",
"config",
"coords",
"dist_mat",
"edge_index",
"element_symbol",
"kind",
"name",
"node_id",
"node_type",
"pdb_df",
"raw_pdb_df",
"residue_name",
"residue_number",
"rgroup_df",
"sequence_A",
"sequence_B",
]
self.columns = columns
self.type2form = {
"atom_type": "str",
"b_factor": "float",
"chain_id": "str",
"coords": "np.array",
"dist_mat": "np.array",
"element_symbol": "str",
"node_id": "str",
"residue_name": "str",
"residue_number": "int",
"edge_index": "torch.tensor",
"kind": "str",
}
def convert_nx_to_dgl(self, G: nx.Graph) -> dgl.DGLGraph:
"""
Converts ``NetworkX`` graph to ``DGL``
:param G: ``nx.Graph`` to convert to ``DGLGraph``
:type G: nx.Graph
:return: ``DGLGraph`` object version of input ``NetworkX`` graph
:rtype: dgl.DGLGraph
"""
g = dgl.DGLGraph()
node_id = list(G.nodes())
G = nx.convert_node_labels_to_integers(G)
## add node level feat
node_dict = {}
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
node_dict[str(key)] = (
[value] if i == 0 else node_dict[str(key)] + [value]
)
string_dict = {}
node_dict_transformed = {}
for i, j in node_dict.items():
if i == "coords":
node_dict_transformed[i] = torch.Tensor(np.asarray(j)).type(
"torch.FloatTensor"
)
elif i == "dist_mat":
node_dict_transformed[i] = torch.Tensor(
np.asarray(j[0].values)
).type("torch.FloatTensor")
elif self.type2form[i] == "str":
string_dict[i] = j
elif self.type2form[i] in ["float", "int"]:
node_dict_transformed[i] = torch.Tensor(np.array(j))
g.add_nodes(
len(node_id),
node_dict_transformed,
)
edge_dict = {}
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
# add edge level features
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
edge_dict[str(key)] = (
list(value)
if i == 0
else edge_dict[str(key)] + list(value)
)
edge_transform_dict = {}
for i, j in node_dict.items():
if self.type2form[i] == "str":
string_dict[i] = j
elif self.type2form[i] in ["float", "int"]:
edge_transform_dict[i] = torch.Tensor(np.array(j))
g.add_edges(edge_index[0], edge_index[1], edge_transform_dict)
# add graph level features
graph_dict = {
str(feat_name): [G.graph[feat_name]]
for feat_name in G.graph
if str(feat_name) in self.columns
}
return g
def convert_nx_to_pyg(self, G: nx.Graph) -> Data:
"""
Converts ``NetworkX`` graph to ``pytorch_geometric.data.Data`` object. Requires ``PyTorch Geometric`` (https://pytorch-geometric.readthedocs.io/en/latest/) to be installed.
:param G: ``nx.Graph`` to convert to PyTorch Geometric ``Data`` object
:type G: nx.Graph
:return: ``Data`` object containing networkx graph data
:rtype: pytorch_geometric.data.Data
"""
# Initialise dict used to construct Data object & Assign node ids as a feature
data = {"node_id": list(G.nodes())}
G = nx.convert_node_labels_to_integers(G)
# Construct Edge Index
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
# Add node features
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
data[str(key)] = (
[value] if i == 0 else data[str(key)] + [value]
)
# Add edge features
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
data[str(key)] = (
list(value) if i == 0 else data[str(key)] + list(value)
)
# Add graph-level features
for feat_name in G.graph:
if str(feat_name) in self.columns:
data[str(feat_name)] = [G.graph[feat_name]]
if "edge_index" in self.columns:
data["edge_index"] = edge_index.view(2, -1)
data = Data.from_dict(data)
data.num_nodes = G.number_of_nodes()
return data
@staticmethod
def convert_nx_to_nx(G: nx.Graph) -> nx.Graph:
"""
Converts NetworkX graph (``nx.Graph``) to NetworkX graph (``nx.Graph``) object. Redundant - returns itself.
:param G: NetworkX Graph
:type G: nx.Graph
:return: NetworkX Graph
:rtype: nx.Graph
"""
return G
@staticmethod
def convert_dgl_to_nx(G: dgl.DGLGraph) -> nx.Graph:
"""
Converts a DGL Graph (``dgl.DGLGraph``) to a NetworkX (``nx.Graph``) object. Preserves node and edge attributes.
:param G: ``dgl.DGLGraph`` to convert to ``NetworkX`` graph.
:type G: dgl.DGLGraph
:return: NetworkX graph object.
:rtype: nx.Graph
"""
node_attrs = G.node_attr_schemes().keys()
edge_attrs = G.edge_attr_schemes().keys()
return dgl.to_networkx(G, node_attrs, edge_attrs)
@staticmethod
def convert_pyg_to_nx(G: Data) -> nx.Graph:
"""Converts PyTorch Geometric ``Data`` object to NetworkX graph (``nx.Graph``).
:param G: Pytorch Geometric Data.
:type G: torch_geometric.data.Data
:returns: NetworkX graph.
:rtype: nx.Graph
"""
return torch_geometric.utils.to_networkx(G)
def convert_nx_to_jraph(self, G: nx.Graph) -> jraph.GraphsTuple:
"""Converts NetworkX graph (``nx.Graph``) to Jraph GraphsTuple graph. Requires ``jax`` and ``Jraph``.
:param G: Networkx graph to convert.
:type G: nx.Graph
:return: Jraph GraphsTuple graph.
:rtype: jraph.GraphsTuple
"""
G = nx.convert_node_labels_to_integers(G)
n_node = len(G)
n_edge = G.number_of_edges()
edge_list = list(G.edges())
senders, receivers = zip(*edge_list)
senders, receivers = jnp.array(senders), jnp.array(receivers)
# Add node features
node_features = {}
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
# node_features[str(key)] = (
# [value]
# if i == 0
# else node_features[str(key)] + [value]
# )
feat = (
[value]
if i == 0
else node_features[str(key)] + [value]
)
try:
feat = torch.tensor(feat)
node_features[str(key)] = feat
except TypeError:
node_features[str(key)] = feat
# Add edge features
edge_features = {}
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
for key, value in feat_dict.items():
if str(key) in self.columns:
edge_features[str(key)] = (
list(value)
if i == 0
else edge_features[str(key)] + list(value)
)
# Add graph features
global_context = {
str(feat_name): [G.graph[feat_name]]
for feat_name in G.graph
if str(feat_name) in self.columns
}
return jraph.GraphsTuple(
nodes=node_features,
senders=senders,
receivers=receivers,
edges=edge_features,
n_node=n_node,
n_edge=n_edge,
globals=global_context,
)
def __call__(self, G: nx.Graph):
nx_g = eval("self.convert_" + self.src_format + "_to_nx(G)")
dst_g = eval("self.convert_nx_to_" + self.dst_format + "(nx_g)")
return dst_g
# def convert_nx_to_pyg_data(G: nx.Graph) -> Data:
# # Initialise dict used to construct Data object
# data = {"node_id": list(G.nodes())}
# G = nx.convert_node_labels_to_integers(G)
# # Construct Edge Index
# edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
# # Add node features
# for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
# for key, value in feat_dict.items():
# data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
# # Add edge features
# for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
# for key, value in feat_dict.items():
# data[str(key)] = (
# list(value) if i == 0 else data[str(key)] + list(value)
# )
# # Add graph-level features
# for feat_name in G.graph:
# data[str(feat_name)] = [G.graph[feat_name]]
# data["edge_index"] = edge_index.view(2, -1)
# data = Data.from_dict(data)
# data.num_nodes = G.number_of_nodes()
# return data
def convert_nx_to_pyg_data(G: nx.Graph) -> Data:
# Initialise dict used to construct Data object
data = {"node_id": list(G.nodes())}
G = nx.convert_node_labels_to_integers(G)
# Construct Edge Index
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
# Add node features
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
for key, value in feat_dict.items():
data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
# Add edge features
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
for key, value in feat_dict.items():
if key == 'distance':
data[str(key)] = (
[value] if i == 0 else data[str(key)] + [value]
)
else:
data[str(key)] = (
[list(value)] if i == 0 else data[str(key)] + [list(value)]
)
# Add graph-level features
for feat_name in G.graph:
data[str(feat_name)] = [G.graph[feat_name]]
data["edge_index"] = edge_index.view(2, -1)
data = Data.from_dict(data)
data.num_nodes = G.number_of_nodes()
return data
|