Visualize in Weights & Biases

qwen2.5-0.5b-sft3-25-2

This model is a fine-tuned version of Qwen/Qwen2.5-0.5B on the hZzy/SFT_new_mix_full2 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3588

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 160
  • total_eval_batch_size: 20
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.9872 0.0275 5 2.9790
2.9825 0.0549 10 2.9788
2.9689 0.0824 15 2.9777
2.9447 0.1099 20 2.9746
2.988 0.1374 25 2.9728
2.9628 0.1648 30 2.9624
2.967 0.1923 35 2.9581
2.9461 0.2198 40 2.9371
2.9331 0.2473 45 2.9298
2.9234 0.2747 50 2.9204
2.8989 0.3022 55 2.8982
2.8686 0.3297 60 2.8832
2.8743 0.3571 65 2.8688
2.8544 0.3846 70 2.8539
2.8436 0.4121 75 2.8396
2.8342 0.4396 80 2.8272
2.8037 0.4670 85 2.8164
2.8064 0.4945 90 2.8064
2.8098 0.5220 95 2.7966
2.8039 0.5495 100 2.7872
2.7711 0.5769 105 2.7780
2.7726 0.6044 110 2.7686
2.7477 0.6319 115 2.7590
2.7558 0.6593 120 2.7497
2.7351 0.6868 125 2.7413
2.7272 0.7143 130 2.7335
2.7094 0.7418 135 2.7261
2.7221 0.7692 140 2.7192
2.7207 0.7967 145 2.7124
2.7111 0.8242 150 2.7056
2.6936 0.8516 155 2.6987
2.686 0.8791 160 2.6917
2.6862 0.9066 165 2.6850
2.6971 0.9341 170 2.6787
2.6812 0.9615 175 2.6726
2.6682 0.9890 180 2.6669
2.6588 1.0165 185 2.6612
2.6507 1.0440 190 2.6556
2.6559 1.0714 195 2.6501
2.6448 1.0989 200 2.6446
2.6349 1.1264 205 2.6392
2.6328 1.1538 210 2.6340
2.6237 1.1813 215 2.6290
2.621 1.2088 220 2.6240
2.6111 1.2363 225 2.6191
2.6244 1.2637 230 2.6142
2.6014 1.2912 235 2.6095
2.5896 1.3187 240 2.6049
2.604 1.3462 245 2.6003
2.5801 1.3736 250 2.5958
2.575 1.4011 255 2.5913
2.5578 1.4286 260 2.5868
2.5672 1.4560 265 2.5824
2.5836 1.4835 270 2.5782
2.5513 1.5110 275 2.5740
2.5551 1.5385 280 2.5699
2.551 1.5659 285 2.5660
2.5512 1.5934 290 2.5621
2.5503 1.6209 295 2.5583
2.5483 1.6484 300 2.5545
2.5426 1.6758 305 2.5508
2.546 1.7033 310 2.5473
2.5336 1.7308 315 2.5438
2.5437 1.7582 320 2.5403
2.5308 1.7857 325 2.5370
2.5102 1.8132 330 2.5337
2.5277 1.8407 335 2.5305
2.5164 1.8681 340 2.5274
2.5149 1.8956 345 2.5243
2.5122 1.9231 350 2.5213
2.5355 1.9505 355 2.5183
2.5043 1.9780 360 2.5154
2.5009 2.0055 365 2.5125
2.4843 2.0330 370 2.5097
2.4708 2.0604 375 2.5070
2.4795 2.0879 380 2.5043
2.4805 2.1154 385 2.5017
2.4856 2.1429 390 2.4991
2.4923 2.1703 395 2.4966
2.4653 2.1978 400 2.4941
2.4609 2.2253 405 2.4918
2.4831 2.2527 410 2.4894
2.4673 2.2802 415 2.4870
2.4746 2.3077 420 2.4847
2.4583 2.3352 425 2.4824
2.4665 2.3626 430 2.4801
2.4467 2.3901 435 2.4780
2.4577 2.4176 440 2.4759
2.4637 2.4451 445 2.4737
2.4563 2.4725 450 2.4717
2.4355 2.5 455 2.4697
2.4638 2.5275 460 2.4676
2.4515 2.5549 465 2.4656
2.4628 2.5824 470 2.4637
2.4454 2.6099 475 2.4619
2.4297 2.6374 480 2.4600
2.4435 2.6648 485 2.4582
2.4506 2.6923 490 2.4564
2.4228 2.7198 495 2.4546
2.4323 2.7473 500 2.4528
2.4367 2.7747 505 2.4510
2.4446 2.8022 510 2.4494
2.4259 2.8297 515 2.4476
2.4234 2.8571 520 2.4460
2.4271 2.8846 525 2.4443
2.4265 2.9121 530 2.4428
2.4054 2.9396 535 2.4412
2.4062 2.9670 540 2.4396
2.4159 2.9945 545 2.4380
2.4002 3.0220 550 2.4365
2.396 3.0495 555 2.4351
2.4111 3.0769 560 2.4337
2.3978 3.1044 565 2.4322
2.4031 3.1319 570 2.4309
2.3942 3.1593 575 2.4296
2.406 3.1868 580 2.4282
2.3814 3.2143 585 2.4270
2.3936 3.2418 590 2.4257
2.4027 3.2692 595 2.4242
2.4043 3.2967 600 2.4230
2.3839 3.3242 605 2.4219
2.3827 3.3516 610 2.4207
2.3886 3.3791 615 2.4194
2.378 3.4066 620 2.4182
2.4134 3.4341 625 2.4171
2.3931 3.4615 630 2.4160
2.3711 3.4890 635 2.4149
2.3712 3.5165 640 2.4138
2.3492 3.5440 645 2.4129
2.388 3.5714 650 2.4118
2.3747 3.5989 655 2.4105
2.394 3.6264 660 2.4096
2.3774 3.6538 665 2.4088
2.3729 3.6813 670 2.4077
2.361 3.7088 675 2.4067
2.3684 3.7363 680 2.4058
2.373 3.7637 685 2.4050
2.3751 3.7912 690 2.4040
2.3738 3.8187 695 2.4030
2.3522 3.8462 700 2.4023
2.3809 3.8736 705 2.4014
2.3637 3.9011 710 2.4005
2.3795 3.9286 715 2.3997
2.3651 3.9560 720 2.3989
2.3695 3.9835 725 2.3982
2.3645 4.0110 730 2.3973
2.3724 4.0385 735 2.3969
2.3352 4.0659 740 2.3961
2.3438 4.0934 745 2.3953
2.345 4.1209 750 2.3947
2.3515 4.1484 755 2.3939
2.3634 4.1758 760 2.3931
2.3334 4.2033 765 2.3927
2.3505 4.2308 770 2.3920
2.3541 4.2582 775 2.3912
2.3585 4.2857 780 2.3906
2.3444 4.3132 785 2.3901
2.3347 4.3407 790 2.3894
2.3337 4.3681 795 2.3888
2.355 4.3956 800 2.3884
2.3204 4.4231 805 2.3877
2.3335 4.4505 810 2.3872
2.3352 4.4780 815 2.3867
2.3359 4.5055 820 2.3861
2.3443 4.5330 825 2.3855
2.3339 4.5604 830 2.3851
2.3302 4.5879 835 2.3845
2.3362 4.6154 840 2.3840
2.3234 4.6429 845 2.3836
2.3247 4.6703 850 2.3831
2.3433 4.6978 855 2.3826
2.3299 4.7253 860 2.3821
2.3437 4.7527 865 2.3817
2.3281 4.7802 870 2.3812
2.3328 4.8077 875 2.3808
2.3375 4.8352 880 2.3803
2.3087 4.8626 885 2.3801
2.3249 4.8901 890 2.3795
2.3437 4.9176 895 2.3788
2.3223 4.9451 900 2.3786
2.3372 4.9725 905 2.3783
2.3161 5.0 910 2.3777
2.313 5.0275 915 2.3776
2.3338 5.0549 920 2.3774
2.3401 5.0824 925 2.3770
2.326 5.1099 930 2.3765
2.3073 5.1374 935 2.3763
2.3172 5.1648 940 2.3761
2.3244 5.1923 945 2.3755
2.3145 5.2198 950 2.3752
2.3032 5.2473 955 2.3750
2.3164 5.2747 960 2.3746
2.2998 5.3022 965 2.3742
2.3269 5.3297 970 2.3740
2.308 5.3571 975 2.3737
2.299 5.3846 980 2.3732
2.3136 5.4121 985 2.3728
2.3162 5.4396 990 2.3726
2.2949 5.4670 995 2.3726
2.3155 5.4945 1000 2.3720
2.3068 5.5220 1005 2.3718
2.3135 5.5495 1010 2.3717
2.3072 5.5769 1015 2.3715
2.299 5.6044 1020 2.3709
2.3212 5.6319 1025 2.3707
2.3108 5.6593 1030 2.3707
2.2816 5.6868 1035 2.3704
2.3154 5.7143 1040 2.3700
2.3026 5.7418 1045 2.3697
2.3074 5.7692 1050 2.3697
2.2816 5.7967 1055 2.3694
2.3076 5.8242 1060 2.3691
2.2984 5.8516 1065 2.3689
2.323 5.8791 1070 2.3686
2.2978 5.9066 1075 2.3684
2.2998 5.9341 1080 2.3680
2.315 5.9615 1085 2.3678
2.3073 5.9890 1090 2.3678
2.3129 6.0165 1095 2.3676
2.2964 6.0440 1100 2.3673
2.2823 6.0714 1105 2.3672
2.2866 6.0989 1110 2.3671
2.282 6.1264 1115 2.3668
2.2961 6.1538 1120 2.3667
2.3081 6.1813 1125 2.3666
2.3031 6.2088 1130 2.3664
2.3074 6.2363 1135 2.3660
2.301 6.2637 1140 2.3659
2.297 6.2912 1145 2.3659
2.308 6.3187 1150 2.3657
2.2736 6.3462 1155 2.3655
2.2973 6.3736 1160 2.3653
2.3048 6.4011 1165 2.3652
2.2995 6.4286 1170 2.3651
2.292 6.4560 1175 2.3648
2.2769 6.4835 1180 2.3647
2.3024 6.5110 1185 2.3645
2.2846 6.5385 1190 2.3642
2.3019 6.5659 1195 2.3641
2.2839 6.5934 1200 2.3642
2.2793 6.6209 1205 2.3641
2.275 6.6484 1210 2.3638
2.2961 6.6758 1215 2.3636
2.2928 6.7033 1220 2.3636
2.2968 6.7308 1225 2.3635
2.2877 6.7582 1230 2.3633
2.296 6.7857 1235 2.3631
2.2777 6.8132 1240 2.3630
2.3088 6.8407 1245 2.3632
2.295 6.8681 1250 2.3630
2.2685 6.8956 1255 2.3627
2.3075 6.9231 1260 2.3625
2.3016 6.9505 1265 2.3623
2.2904 6.9780 1270 2.3623
2.2727 7.0055 1275 2.3622
2.2683 7.0330 1280 2.3622
2.2904 7.0604 1285 2.3622
2.2958 7.0879 1290 2.3620
2.2943 7.1154 1295 2.3619
2.2771 7.1429 1300 2.3619
2.2793 7.1703 1305 2.3619
2.2922 7.1978 1310 2.3619
2.2902 7.2253 1315 2.3617
2.2885 7.2527 1320 2.3614
2.3024 7.2802 1325 2.3612
2.2805 7.3077 1330 2.3613
2.2718 7.3352 1335 2.3614
2.3057 7.3626 1340 2.3614
2.2937 7.3901 1345 2.3612
2.2762 7.4176 1350 2.3609
2.2874 7.4451 1355 2.3609
2.293 7.4725 1360 2.3610
2.2689 7.5 1365 2.3610
2.29 7.5275 1370 2.3608
2.2712 7.5549 1375 2.3608
2.2801 7.5824 1380 2.3607
2.2955 7.6099 1385 2.3607
2.2714 7.6374 1390 2.3606
2.2725 7.6648 1395 2.3604
2.3038 7.6923 1400 2.3603
2.2574 7.7198 1405 2.3604
2.284 7.7473 1410 2.3604
2.2773 7.7747 1415 2.3602
2.2737 7.8022 1420 2.3600
2.2874 7.8297 1425 2.3600
2.29 7.8571 1430 2.3600
2.2785 7.8846 1435 2.3599
2.2839 7.9121 1440 2.3599
2.2967 7.9396 1445 2.3598
2.2666 7.9670 1450 2.3597
2.2684 7.9945 1455 2.3598
2.275 8.0220 1460 2.3598
2.275 8.0495 1465 2.3598
2.2833 8.0769 1470 2.3598
2.2707 8.1044 1475 2.3597
2.2817 8.1319 1480 2.3596
2.2804 8.1593 1485 2.3595
2.2799 8.1868 1490 2.3595
2.2578 8.2143 1495 2.3595
2.2768 8.2418 1500 2.3596
2.2653 8.2692 1505 2.3597
2.283 8.2967 1510 2.3596
2.2761 8.3242 1515 2.3595
2.2787 8.3516 1520 2.3593
2.2811 8.3791 1525 2.3593
2.2888 8.4066 1530 2.3592
2.2865 8.4341 1535 2.3592
2.2677 8.4615 1540 2.3593
2.2904 8.4890 1545 2.3594
2.2726 8.5165 1550 2.3594
2.2733 8.5440 1555 2.3593
2.2771 8.5714 1560 2.3593
2.2624 8.5989 1565 2.3593
2.2799 8.6264 1570 2.3592
2.2582 8.6538 1575 2.3592
2.2906 8.6813 1580 2.3591
2.2948 8.7088 1585 2.3590
2.2733 8.7363 1590 2.3590
2.279 8.7637 1595 2.3590
2.2951 8.7912 1600 2.3590
2.2836 8.8187 1605 2.3590
2.2703 8.8462 1610 2.3591
2.2899 8.8736 1615 2.3590
2.2786 8.9011 1620 2.3590
2.298 8.9286 1625 2.3589
2.278 8.9560 1630 2.3589
2.2648 8.9835 1635 2.3589
2.2827 9.0110 1640 2.3589
2.2798 9.0385 1645 2.3589
2.2769 9.0659 1650 2.3589
2.2712 9.0934 1655 2.3589
2.2697 9.1209 1660 2.3589
2.2816 9.1484 1665 2.3589
2.2884 9.1758 1670 2.3589
2.2654 9.2033 1675 2.3589
2.2758 9.2308 1680 2.3589
2.2631 9.2582 1685 2.3589
2.2648 9.2857 1690 2.3589
2.2838 9.3132 1695 2.3589
2.2742 9.3407 1700 2.3589
2.2946 9.3681 1705 2.3589
2.2758 9.3956 1710 2.3588
2.2835 9.4231 1715 2.3588
2.2856 9.4505 1720 2.3588
2.279 9.4780 1725 2.3588
2.2898 9.5055 1730 2.3588
2.2698 9.5330 1735 2.3588
2.2952 9.5604 1740 2.3588
2.2714 9.5879 1745 2.3588
2.2766 9.6154 1750 2.3588
2.2601 9.6429 1755 2.3588
2.2829 9.6703 1760 2.3588
2.2821 9.6978 1765 2.3588
2.2779 9.7253 1770 2.3588
2.2724 9.7527 1775 2.3588
2.288 9.7802 1780 2.3588
2.2783 9.8077 1785 2.3588
2.2677 9.8352 1790 2.3588
2.2756 9.8626 1795 2.3588
2.2594 9.8901 1800 2.3588
2.287 9.9176 1805 2.3588
2.2637 9.9451 1810 2.3588
2.2664 9.9725 1815 2.3588
2.2901 10.0 1820 2.3588

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
125
Safetensors
Model size
494M params
Tensor type
FP16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-sft3-25-2

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(164)
this model
Finetunes
7 models

Dataset used to train hZzy/qwen2.5-0.5b-sft3-25-2