Visualize in Weights & Biases

qwen2.5-0.5b-expo-L2EXPO-W1-25-1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft3-25-1 on the hZzy/train_pairwise_all_new3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9978
  • Objective: 1.0385
  • Reward Accuracy: 0.6225
  • Logp Accuracy: 0.5257
  • Log Diff Policy: 1.5308
  • Chosen Logps: -92.4974
  • Rejected Logps: -94.0283
  • Chosen Rewards: -0.1162
  • Rejected Rewards: -0.1695
  • Logits: -1.3443

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 288
  • total_eval_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Objective Reward Accuracy Logp Accuracy Log Diff Policy Chosen Logps Rejected Logps Chosen Rewards Rejected Rewards Logits
1.0153 0.1579 50 1.1586 1.1718 0.5464 0.5207 1.1966 -91.8008 -92.9973 -0.0466 -0.0664 -1.3046
1.0057 0.3157 100 1.0674 1.0765 0.5856 0.5263 1.5173 -94.7445 -96.2618 -0.3409 -0.3928 -1.4112
0.8108 0.4736 150 1.0307 1.0602 0.6051 0.5207 1.4865 -92.5835 -94.0700 -0.1248 -0.1736 -1.4021
0.8145 0.6314 200 1.0184 1.0653 0.6119 0.5252 1.5125 -94.9213 -96.4338 -0.3586 -0.4100 -1.3903
0.7189 0.7893 250 1.0102 1.0502 0.6096 0.5246 1.5439 -94.0147 -95.5586 -0.2680 -0.3225 -1.3744
0.7554 0.9471 300 0.9940 1.0419 0.6152 0.5263 1.6331 -94.6551 -96.2883 -0.3320 -0.3955 -1.4065
0.5469 1.1050 350 0.9994 1.0501 0.6180 0.5274 1.5541 -93.9724 -95.5266 -0.2637 -0.3193 -1.3515
0.512 1.2628 400 0.9966 1.0408 0.6191 0.5274 1.5421 -92.4428 -93.9849 -0.1108 -0.1651 -1.3312
0.5342 1.4207 450 1.0068 1.0521 0.6096 0.5285 1.5128 -93.2476 -94.7605 -0.1913 -0.2427 -1.3427
0.4719 1.5785 500 1.0019 1.0448 0.6152 0.5263 1.5245 -92.7874 -94.3119 -0.1452 -0.1978 -1.3491
0.4754 1.7364 550 1.0023 1.0418 0.6219 0.5268 1.5303 -92.6206 -94.1509 -0.1285 -0.1817 -1.3355
0.492 1.8942 600 0.9977 1.0330 0.6208 0.5246 1.5432 -92.4528 -93.9960 -0.1118 -0.1662 -1.3587
0.3514 2.0521 650 0.9945 1.0385 0.6214 0.5257 1.5486 -92.2665 -93.8151 -0.0931 -0.1482 -1.3449
0.3632 2.2099 700 0.9986 1.0383 0.6208 0.5268 1.5230 -91.8966 -93.4196 -0.0562 -0.1086 -1.3538
0.359 2.3678 750 0.9991 1.0389 0.6169 0.5268 1.5244 -92.6741 -94.1985 -0.1339 -0.1865 -1.3483
0.3518 2.5257 800 0.9971 1.0368 0.6219 0.5268 1.5332 -92.5075 -94.0407 -0.1172 -0.1707 -1.3449
0.3661 2.6835 850 0.9980 1.0383 0.6225 0.5263 1.5309 -92.4734 -94.0043 -0.1138 -0.1671 -1.3435
0.335 2.8414 900 0.9976 1.0383 0.6236 0.5257 1.5313 -92.4988 -94.0302 -0.1164 -0.1697 -1.3442

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hZzy/qwen2.5-0.5b-expo-L2EXPO-W1-25-1

Base model

Qwen/Qwen2.5-0.5B
Finetuned
(7)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-L2EXPO-W1-25-1