Visualize in Weights & Biases

qwen2.5-0.5b-expo-DPO-L2EXPO-noES-0.1

This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3212
  • Logps: -78.9331
  • Logits: -0.6046
  • Objective: 1.2922
  • Dpo Loss: 0.7096
  • Regularize: 0.5826
  • Ranking Simple: 0.5357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 3
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 144
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Logps Logits Objective Dpo Loss Regularize Ranking Simple
1.0668 0.1417 50 1.1061 -90.1942 -1.4829 1.1093 0.6857 0.4236 0.5300
1.0269 0.2834 100 1.1677 -92.1258 -1.4409 1.1407 0.6807 0.4600 0.5326
1.0823 0.4251 150 1.2316 -81.0954 -1.3424 1.2139 0.6936 0.5204 0.5285
1.0577 0.5668 200 1.2470 -82.5828 -1.0627 1.2263 0.6939 0.5324 0.5331
0.9955 0.7085 250 1.2858 -81.0205 -1.0947 1.2580 0.7011 0.5569 0.5347
0.954 0.8503 300 1.2727 -82.4789 -0.9186 1.2483 0.6948 0.5535 0.5409
0.9014 0.9920 350 1.2973 -80.3169 -0.8042 1.2672 0.7021 0.5651 0.5362
0.8458 1.1337 400 1.3161 -78.6994 -0.5803 1.2922 0.7089 0.5833 0.5383
0.8325 1.2754 450 1.3054 -79.2087 -0.6878 1.2837 0.7065 0.5772 0.5378
0.796 1.4171 500 1.3290 -79.5455 -0.6465 1.3067 0.7132 0.5934 0.5383
0.7784 1.5588 550 1.3215 -78.1244 -0.6049 1.2954 0.7083 0.5871 0.5414
0.753 1.7005 600 1.3166 -78.2126 -0.5817 1.2870 0.7062 0.5808 0.5373
0.738 1.8422 650 1.3141 -78.5070 -0.6067 1.2850 0.7055 0.5794 0.5378
0.7128 1.9839 700 1.3177 -78.7581 -0.6380 1.2901 0.7085 0.5816 0.5404
0.6518 2.1256 750 1.3227 -79.7230 -0.6694 1.2915 0.7083 0.5832 0.5393
0.6576 2.2674 800 1.3182 -79.6166 -0.6259 1.2881 0.7079 0.5801 0.5367
0.6373 2.4091 850 1.3180 -79.0937 -0.5955 1.2881 0.7083 0.5798 0.5367
0.6338 2.5508 900 1.3195 -78.9960 -0.6047 1.2905 0.7091 0.5814 0.5347
0.631 2.6925 950 1.3215 -78.8580 -0.6057 1.2924 0.7096 0.5828 0.5362
0.6254 2.8342 1000 1.3215 -78.9196 -0.6057 1.2924 0.7096 0.5828 0.5373
0.6187 2.9759 1050 1.3212 -78.9331 -0.6046 1.2922 0.7096 0.5826 0.5357

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
494M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for hZzy/qwen2.5-0.5b-expo-DPO-L2EXPO-noES-0.1

Finetuned
(74)
this model

Dataset used to train hZzy/qwen2.5-0.5b-expo-DPO-L2EXPO-noES-0.1