File size: 3,040 Bytes
0c1150b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d67a01e
 
c16b5f8
d67a01e
 
 
 
 
 
 
 
0c1150b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f574d
657c58d
c16b5f8
d67a01e
0c1150b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_keras_callback
model-index:
- name: gustavokpc/bert-base-portuguese-cased_LRATE_5e-06_EPOCHS_6
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# gustavokpc/bert-base-portuguese-cased_LRATE_5e-06_EPOCHS_6

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0811
- Train Accuracy: 0.9728
- Train F1 M: 0.5572
- Train Precision M: 0.4036
- Train Recall M: 0.9646
- Validation Loss: 0.1804
- Validation Accuracy: 0.9387
- Validation F1 M: 0.5549
- Validation Precision M: 0.3999
- Validation Recall M: 0.9504
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-06, 'decay_steps': 4548, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Accuracy | Train F1 M | Train Precision M | Train Recall M | Validation Loss | Validation Accuracy | Validation F1 M | Validation Precision M | Validation Recall M | Epoch |
|:----------:|:--------------:|:----------:|:-----------------:|:--------------:|:---------------:|:-------------------:|:---------------:|:----------------------:|:-------------------:|:-----:|
| 0.2887     | 0.8821         | 0.4544     | 0.3418            | 0.7393         | 0.1871          | 0.9321              | 0.5574          | 0.4039                 | 0.9455              | 0     |
| 0.1571     | 0.9439         | 0.5463     | 0.3992            | 0.9299         | 0.1740          | 0.9321              | 0.5596          | 0.4040                 | 0.9542              | 1     |
| 0.1185     | 0.9587         | 0.5529     | 0.4020            | 0.9480         | 0.1714          | 0.9367              | 0.5588          | 0.4030                 | 0.9555              | 2     |
| 0.0950     | 0.9662         | 0.5572     | 0.4033            | 0.9621         | 0.1775          | 0.9373              | 0.5604          | 0.4033                 | 0.9607              | 3     |
| 0.0811     | 0.9728         | 0.5572     | 0.4036            | 0.9646         | 0.1804          | 0.9387              | 0.5549          | 0.3999                 | 0.9504              | 4     |


### Framework versions

- Transformers 4.34.1
- TensorFlow 2.10.0
- Datasets 2.14.5
- Tokenizers 0.14.1