YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

EEGNet V4 is implemented using Braindecode version 0.8.1 and Skorch version 0.15.

Model details

  • Architecture: EEGNet by Lawhern et al.
  • Accuracy: 86%
  • NonTarget recall: 0.86
  • NonTarget precision: 0.97
  • Target recall: 0.84
  • Target precision: 0.54

Training details

  • Trained on the Lee 2019 ERP dataset (http://moabb.neurotechx.com/docs/generated/moabb.datasets.Lee2019_ERP.html#moabb.datasets.Lee2019_ERP)
  • Dropout rate of 25%
  • Class rebalanced weighting of the labels after data preprocessing
  • 8 spatial filters with 2 temporal filters per spatial filter
  • Batch size of 128
  • Dataset is shuffled and a random 20% is used as a validation set
  • trained for 1000 epochs, model with the lowest validation loss is saved

Get started with the Model

from braindecode.models import EEGNetv4
from huggingface_hub import hf_hub_download
from skorch import NeuralNet
import torch.nn as nn
import torch as th

path_params = hf_hub_download(
    repo_id='guido151/EEGNetv4',
    filename='EEGNetv4_Lee2019_ERP/params.pt',
)
path_optimizer = hf_hub_download(
    repo_id='guido151/EEGNetv4',
    filename='EEGNetv4_Lee2019_ERP/optimizer.pt',
)
path_history = hf_hub_download(
    repo_id='guido151/EEGNetv4',
    filename='EEGNetv4_Lee2019_ERP/history.json',
)
path_criterion = hf_hub_download(
    repo_id='guido151/EEGNetv4',
    filename='EEGNetv4_Lee2019_ERP/criterion.pt',
)

model = EEGNetv4(
        n_chans=19,
        n_outputs=2,
        n_times=128,
)
  
net = NeuralNet(
    model,
    criterion=nn.CrossEntropyLoss(weight=th.tensor([1, 1])),
)
net.initialize()
net.load_params(
    path_params,
    path_optimizer,
    path_criterion,
    path_history,
)

Get the FID model

def get_fid_model(model: EEGNetv4) -> nn.Module:
    fid_model = deepcopy(model)
    for i in range(len(fid_model)):
        if i >= 14:
            fid_model[i] = Identity()
    fid_model.eval()
    for param in fid_model.parameters():
        param.requires_grad = False
    return fid_model

Get the IS model

def get_is_model(model: EEGNetv4) -> nn.Module:
    is_model = deepcopy(model)
    is_model.eval()
    for param in is_model.parameters():
        param.requires_grad = False
    return is_model
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.