SloBertAA_Top10_WithoutOOC_082023_MultilingualBertBase
This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7220
- Accuracy: 0.9126
- F1: 0.9124
- Precision: 0.9124
- Recall: 0.9126
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.4121 | 1.0 | 14812 | 0.3720 | 0.8793 | 0.8791 | 0.8812 | 0.8793 |
0.3263 | 2.0 | 29624 | 0.3897 | 0.8901 | 0.8900 | 0.8935 | 0.8901 |
0.2433 | 3.0 | 44436 | 0.3997 | 0.8994 | 0.8993 | 0.9009 | 0.8994 |
0.2059 | 4.0 | 59248 | 0.4452 | 0.9054 | 0.9051 | 0.9058 | 0.9054 |
0.1406 | 5.0 | 74060 | 0.5360 | 0.9054 | 0.9054 | 0.9064 | 0.9054 |
0.101 | 6.0 | 88872 | 0.6087 | 0.9073 | 0.9075 | 0.9081 | 0.9073 |
0.0775 | 7.0 | 103684 | 0.6350 | 0.9097 | 0.9095 | 0.9096 | 0.9097 |
0.0389 | 8.0 | 118496 | 0.6879 | 0.9093 | 0.9091 | 0.9093 | 0.9093 |
0.0341 | 9.0 | 133308 | 0.6942 | 0.9122 | 0.9122 | 0.9122 | 0.9122 |
0.0237 | 10.0 | 148120 | 0.7220 | 0.9126 | 0.9124 | 0.9124 | 0.9126 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.8.0
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.