SloBertAA_Top10_WithOOC_082023_MultilingualBertBase
This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9947
- Accuracy: 0.8736
- F1: 0.8724
- Precision: 0.8719
- Recall: 0.8736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5359 | 1.0 | 16293 | 0.4879 | 0.8398 | 0.8353 | 0.8380 | 0.8398 |
0.43 | 2.0 | 32586 | 0.4565 | 0.8539 | 0.8523 | 0.8523 | 0.8539 |
0.3291 | 3.0 | 48879 | 0.4742 | 0.8630 | 0.8604 | 0.8618 | 0.8630 |
0.2679 | 4.0 | 65172 | 0.5551 | 0.8669 | 0.8647 | 0.8640 | 0.8669 |
0.2273 | 5.0 | 81465 | 0.6732 | 0.8680 | 0.8649 | 0.8651 | 0.8680 |
0.1807 | 6.0 | 97758 | 0.7518 | 0.8686 | 0.8674 | 0.8669 | 0.8686 |
0.1098 | 7.0 | 114051 | 0.8626 | 0.8672 | 0.8649 | 0.8646 | 0.8672 |
0.0732 | 8.0 | 130344 | 0.9343 | 0.8712 | 0.8702 | 0.8701 | 0.8712 |
0.0622 | 9.0 | 146637 | 0.9738 | 0.8718 | 0.8700 | 0.8694 | 0.8718 |
0.0373 | 10.0 | 162930 | 0.9947 | 0.8736 | 0.8724 | 0.8719 | 0.8736 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.8.0
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.