File size: 1,231 Bytes
7755815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Dict, List, Any
from transformers import CLIPTokenizer, CLIPModel
import numpy as np
import os
import torch


class EndpointHandler:
    def __init__(self, path="."):
        # load the model
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model = CLIPModel.from_pretrained(path).to(self.device).eval()
        self.tokenizer = CLIPTokenizer.from_pretrained(path)

    def __call__(self, data: Dict[str, Any]) -> List[float]:
        """
         data args:
              inputs (:obj: `str` | `PIL.Image` | `np.array`)
              kwargs
        Return:
              A :obj:`list` | `dict`: will be serialized and returned
        """
        # compute the embedding of the input
        query = data["inputs"]
        inputs = self.tokenizer(query, padding=True, return_tensors="pt").to(
            self.device
        )
        with torch.no_grad():
            text_features = self.model.get_text_features(**inputs)

        text_features = text_features.cpu().detach().numpy()
        input_embedding = text_features[0]

        # normalize the embedding
        input_embedding /= np.linalg.norm(input_embedding)

        return input_embedding.tolist()