开源中文预训练语言模型Steel-LLM

由zhanshijin和lishu14创建

👋 介绍

Steel-LLM是个人发起的利用业余时间从零开始预训练中文大模型的项目。我们使用了1T+的数据预训练一个1B左右参数量的中文LLM,耗时8个月。我们分享了数据收集、数据处理、预训练框架修改、模型设计、模型微调等全过程,并开源全部代码。让每个人在有8~几十张卡的情况下都能复现我们的工作。得益于开源中文数据,Steel LLM在中文benchmark上表现优于一些大几倍的机构发布的LLM,最终在ceval达到了38分,cmmlu达到了33分。

🐱 Github      📑 Blog   🌐公众号:炼钢AI

"Steel(钢)"取名灵感来源于华北平原一只优秀的乐队“万能青年旅店(万青)”。乐队在做一专的时候条件有限,自称是在“土法炼钢”,但却是一张神专。我们训练LLM的条件同样有限,但也希望能炼出好“钢”来。

🔥更新

2025.1.17 更新steel-LLM-chat-v2,微调时加入了英文数据,中英文数据比例和预训练保持一致,最终在ceval上由38分提高到了41.9分,cmmlu从33分提高到了36分。

📖 预训练数据

预训练数据方面,Steel-LLM主要使用了wanjuan1.0、Skywork/Skypile-150B数据集、starcoder的python/java/c++数据。另外也加入了中文维基百科、百度百科、知乎问答等数据,转换为token id后占用1.7T硬盘空间。Steel-LLM也对问答数据以及代码数据使用data-juicer进行了数据清洗,数据收集及数据处理的具体细节见我的博客: https://mp.weixin.qq.com/s/yqmtHLuuNV9075qHgzhcPw

🎰 训练框架

训练框架方面,我们修改了TinyLlama训练程序,兼容Hugginface格式模型、支持了数据断点续训、支持了追加新的数据等能力。训练前20k checkpoint使用8 * A100,之后使用的是8 * H800 具体的技术细节见我的博客:https://mp.weixin.qq.com/s/KPRir6bK3MZZ-vMFTfhUQQ

🤖模型结构

tokenizer方面,使用了Qwen/Qwen1.5-MoE-A2.7B-Chat的tokenizer。模型结构方面基于Qwen1.5模型进行了以下的新结构的尝试:

💡 微调

微调阶段主要使用了BAAI/Infinity-Instruct、预训练数据中的wanjuan中文选择题部分(回炉重造)、ruozhiba等数据。尝试了COT/非COT微调、刷榜测试。 具体的实验细节见我的博客:https://mp.weixin.qq.com/s/KK0G0spNw0D9rPUESkHMew

🏅 评估

Steel-LLM在CEVAL和CMMLU上进行了测试。Steel-LLM旨在训练一个中文LLM,80%的训练数据都是中文,因此并没有在英文benchmark上进行评测。 其他模型的指标来自于CEVAL论文、MiniCPM技术报告、MAP-Neo技术报告等途径。更多模型的指标可查看之前的博客

CEVAL CMMLU
Steel-LLM(chat v2) 41.9 36.08
ChatGPT 51.0 -
GPT4 66.4 -
ChatGLM-6B 38.9 -
Moss 33.1 -
LLAMA-65B 34.7 -
Tiny-Llama-1.1B 25.02 24.03
Qwen-7B 58.96 60.35
Gemma-7B 42.57 44.20
Qwen-1.8B 49.81 45.32
mini-CPM-1.2B 49.14 46.81
Phi2(2B) 23.37 24.18
OLMo-7B 35.18 35.55
MAP-NEO-7B 56.97 55.01

⛏️ 快速使用

from modelscope import AutoModelForCausalLM, AutoTokenizer

model_name = "zhanshijin/Steel-LLM"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "你是谁开发的"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.