Edit model card

Roberta2Roberta_L-24_discofuse EncoderDecoder model

The model was introduced in this paper by Sascha Rothe, Shashi Narayan, Aliaksei Severyn and first released in this repository.

The model is an encoder-decoder model that was initialized on the roberta-large checkpoints for both the encoder and decoder and fine-tuned on sentencefusion on the discofuse dataset, which is linked above.

Disclaimer: The model card has been written by the Hugging Face team.

How to use

You can use this model for sentence fusion, e.g.

IMPORTANT: The model was not trained on the " (double quotation mark) character -> so the before tokenizing the text, it is advised to replace all " (double quotation marks) with a single ` (single back tick).

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("google/roberta2roberta_L-24_discofuse")
model = AutoModelForSeq2SeqLM.from_pretrained("google/roberta2roberta_L-24_discofuse")

discofuse = """As a run-blocker, Zeitler moves relatively well. Zeitler often struggles at the point of contact in space."""

input_ids = tokenizer(discofuse, return_tensors="pt").input_ids
output_ids = model.generate(input_ids)[0]
print(tokenizer.decode(output_ids, skip_special_tokens=True))
# should output
# As a run-blocker, Zeitler moves relatively well. However, Zeitler often struggles at the point of contact in space.  
Downloads last month
Hosted inference API
This model can be loaded on the Inference API on-demand.

Dataset used to train google/roberta2roberta_L-24_discofuse