Official repository: https://github.com/gonglinyuan/ast_t5
AST-T5
Paper: AST-T5: Structure-Aware Pretraining for Code Generation and Understanding
Authors: Linyuan Gong, Mostafa Elhoushi, Alvin Cheung
Use the AST-T5 Model
The AST-T5 model is readily available on the Huggingface Model Hub (https://huggingface.co/gonglinyuan/ast_t5_base). To use our AST-T5 model in PyTorch (Python 3.8+, PyTorch 1.12+ and transformers 4.36+ are prerequisites), refer to the code snippet below:
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model = AutoModelForSeq2SeqLM.from_pretrained("gonglinyuan/ast_t5_base", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("gonglinyuan/ast_t5_base", trust_remote_code=True)
input_text = r'''def fibonacci(n):
"""return n-th fibonacci number.
fibonacci[0] = 0
fibonacci[1] = 1
"""'''
inputs = tokenizer(
[input_text + "<sen001>"], # T5-style sentinel token for completion
max_length=1024,
truncation=True,
add_special_tokens=True,
return_tensors="pt"
).input_ids
outputs = model.generate(inputs, max_length=256, do_sample=False)
output_code = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
output_code = output_code[len("<sen001>"):] # Remove the sentinel token
print(input_text + output_code)
Note: The ast_t5_base
model is not an instruct model. It works best with specific prompts like function signatures or comments, rather than general instructions such as "Please write a code to calculate the n-th fibonacci number".
Citation
If you find the code and models useful for your research, please cite the following paper:
@article{
ast_t5,
title={{AST}-{T}5: Structure-Aware Pretraining for Code Generation and Understanding},
url={http://arxiv.org/abs/2401.03003},
DOI={10.48550/arXiv.2401.03003},
note={arXiv:2401.03003 [cs]},
number={arXiv:2401.03003},
publisher={arXiv},
author={Gong, Linyuan and Elhoushi, Mostafa and Cheung, Alvin},
year={2024}, month=jan
}
- Downloads last month
- 61
Dataset used to train gonglinyuan/ast_t5_base
Evaluation results
- pass@1 on HumanEvalself-reported0.140
- pass@1 on MBPP (Zero-Shot)self-reported0.239