bert_uncased_L-2_H-512_A-8_qqp

This model is a fine-tuned version of google/bert_uncased_L-2_H-512_A-8 on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2936
  • Accuracy: 0.8775
  • F1: 0.8350
  • Combined Score: 0.8562

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.3895 1.0 1422 0.3335 0.8481 0.7883 0.8182
0.3058 2.0 2844 0.3006 0.8682 0.8232 0.8457
0.26 3.0 4266 0.2964 0.8745 0.8298 0.8522
0.2254 4.0 5688 0.2936 0.8775 0.8350 0.8562
0.195 5.0 7110 0.3151 0.8803 0.8427 0.8615
0.1696 6.0 8532 0.3190 0.8815 0.8431 0.8623
0.1492 7.0 9954 0.3478 0.8781 0.8415 0.8598
0.1322 8.0 11376 0.3563 0.8823 0.8441 0.8632
0.1175 9.0 12798 0.3841 0.8835 0.8470 0.8652

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
20
Safetensors
Model size
22.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokulsrinivasagan/bert_uncased_L-2_H-512_A-8_qqp

Finetuned
(11)
this model

Dataset used to train gokulsrinivasagan/bert_uncased_L-2_H-512_A-8_qqp

Evaluation results