bert_base_lda_50_v1_qqp
This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_50_v1 on the GLUE QQP dataset. It achieves the following results on the evaluation set:
- Loss: 0.3505
- Accuracy: 0.8445
- F1: 0.7944
- Combined Score: 0.8195
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
---|---|---|---|---|---|---|
0.4563 | 1.0 | 1422 | 0.3956 | 0.8087 | 0.7132 | 0.7609 |
0.3454 | 2.0 | 2844 | 0.3695 | 0.8330 | 0.7858 | 0.8094 |
0.2753 | 3.0 | 4266 | 0.3505 | 0.8445 | 0.7944 | 0.8195 |
0.2139 | 4.0 | 5688 | 0.3907 | 0.8481 | 0.7854 | 0.8167 |
0.1633 | 5.0 | 7110 | 0.4414 | 0.8540 | 0.7971 | 0.8255 |
0.1256 | 6.0 | 8532 | 0.5087 | 0.8528 | 0.7983 | 0.8255 |
0.0988 | 7.0 | 9954 | 0.4923 | 0.8504 | 0.8046 | 0.8275 |
0.0789 | 8.0 | 11376 | 0.5858 | 0.8551 | 0.8039 | 0.8295 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gokulsrinivasagan/bert_base_lda_50_v1_qqp
Base model
gokulsrinivasagan/bert_base_lda_50_v1Dataset used to train gokulsrinivasagan/bert_base_lda_50_v1_qqp
Evaluation results
- Accuracy on GLUE QQPself-reported0.844
- F1 on GLUE QQPself-reported0.794