bert_base_lda_20_v1_mnli
This model is a fine-tuned version of gokulsrinivasagan/bert_base_lda_20_v1 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.7431
- Accuracy: 0.6757
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.982 | 1.0 | 1534 | 0.8701 | 0.6042 |
0.8235 | 2.0 | 3068 | 0.7861 | 0.6505 |
0.7271 | 3.0 | 4602 | 0.7573 | 0.6709 |
0.6496 | 4.0 | 6136 | 0.7640 | 0.6773 |
0.5781 | 5.0 | 7670 | 0.7740 | 0.6818 |
0.5058 | 6.0 | 9204 | 0.8325 | 0.6860 |
0.4359 | 7.0 | 10738 | 0.8754 | 0.6818 |
0.3732 | 8.0 | 12272 | 0.9832 | 0.6795 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gokulsrinivasagan/bert_base_lda_20_v1_mnli
Base model
gokulsrinivasagan/bert_base_lda_20_v1