File size: 2,107 Bytes
aa4a90c e9eb263 aa4a90c e9eb263 aa4a90c e9eb263 aa4a90c e9eb263 aa4a90c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
type: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
metrics:
- name: Accuracy
type: accuracy
value: 0.42346160366163754
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_lda_100_v1
This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100 dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9999
- Accuracy: 0.4235
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 10.4589 | 4.1982 | 10000 | 10.2935 | 0.1510 |
| 9.6043 | 8.3963 | 20000 | 9.6179 | 0.1525 |
| 9.48 | 12.5945 | 30000 | 9.5449 | 0.1561 |
| 8.9658 | 16.7926 | 40000 | 8.8322 | 0.2303 |
| 7.2614 | 20.9908 | 50000 | 7.0173 | 0.4201 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1
|