File size: 2,107 Bytes
aa4a90c
 
 
 
e9eb263
 
aa4a90c
 
 
 
e9eb263
 
 
 
 
 
 
 
 
 
 
aa4a90c
 
 
 
 
 
 
e9eb263
aa4a90c
e9eb263
 
aa4a90c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
      type: gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.42346160366163754
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_lda_100_v1

This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_wikitext-103-raw-v1-ld-100 dataset.
It achieves the following results on the evaluation set:
- Loss: 6.9999
- Accuracy: 0.4235

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Accuracy |
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
| 10.4589       | 4.1982  | 10000 | 10.2935         | 0.1510   |
| 9.6043        | 8.3963  | 20000 | 9.6179          | 0.1525   |
| 9.48          | 12.5945 | 30000 | 9.5449          | 0.1561   |
| 8.9658        | 16.7926 | 40000 | 8.8322          | 0.2303   |
| 7.2614        | 20.9908 | 50000 | 7.0173          | 0.4201   |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1