hBERTv2_new_pretrain_48_ver2_mrpc

This model is a fine-tuned version of gokuls/bert_12_layer_model_v2_complete_training_new_48 on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5864
  • Accuracy: 0.6961
  • F1: 0.7832
  • Combined Score: 0.7396

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
0.664 1.0 58 0.6194 0.6716 0.7481 0.7098
0.6055 2.0 116 0.5864 0.6961 0.7832 0.7396
0.5319 3.0 174 0.6058 0.6838 0.7772 0.7305
0.4447 4.0 232 0.7045 0.6667 0.7679 0.7173
0.3601 5.0 290 0.7750 0.6642 0.7609 0.7126
0.2754 6.0 348 1.0176 0.6789 0.7813 0.7301
0.1895 7.0 406 1.4308 0.6299 0.7229 0.6764

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
4
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokuls/hBERTv2_new_pretrain_48_ver2_mrpc

Dataset used to train gokuls/hBERTv2_new_pretrain_48_ver2_mrpc

Evaluation results