gokuls's picture
End of training
0625e09
metadata
language:
  - en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_new_pretrain_48_ver2_qnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          config: qnli
          split: validation
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5053999633900788

hBERTv1_new_pretrain_48_ver2_qnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48 on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6931
  • Accuracy: 0.5054

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6982 1.0 1637 0.6940 0.5054
0.6941 2.0 3274 0.6932 0.4946
0.6938 3.0 4911 0.6933 0.4946
0.6936 4.0 6548 0.6931 0.5054
0.6934 5.0 8185 0.6936 0.4946
0.6934 6.0 9822 0.6936 0.4946
0.6934 7.0 11459 0.6931 0.5054
0.6932 8.0 13096 0.6931 0.4946
0.6932 9.0 14733 0.6935 0.5054
0.6932 10.0 16370 0.6932 0.4946
0.6932 11.0 18007 0.6931 0.5054
0.6932 12.0 19644 0.6932 0.4946

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1