File size: 2,518 Bytes
4ba5a4c
0625e09
 
4ba5a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
0625e09
4ba5a4c
 
 
 
 
 
 
0625e09
4ba5a4c
 
 
 
 
 
 
0625e09
4ba5a4c
0625e09
 
4ba5a4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: hBERTv1_new_pretrain_48_ver2_qnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE QNLI
      type: glue
      config: qnli
      split: validation
      args: qnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5053999633900788
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hBERTv1_new_pretrain_48_ver2_qnli

This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.5054

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 10
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.6982        | 1.0   | 1637  | 0.6940          | 0.5054   |
| 0.6941        | 2.0   | 3274  | 0.6932          | 0.4946   |
| 0.6938        | 3.0   | 4911  | 0.6933          | 0.4946   |
| 0.6936        | 4.0   | 6548  | 0.6931          | 0.5054   |
| 0.6934        | 5.0   | 8185  | 0.6936          | 0.4946   |
| 0.6934        | 6.0   | 9822  | 0.6936          | 0.4946   |
| 0.6934        | 7.0   | 11459 | 0.6931          | 0.5054   |
| 0.6932        | 8.0   | 13096 | 0.6931          | 0.4946   |
| 0.6932        | 9.0   | 14733 | 0.6935          | 0.5054   |
| 0.6932        | 10.0  | 16370 | 0.6932          | 0.4946   |
| 0.6932        | 11.0  | 18007 | 0.6931          | 0.5054   |
| 0.6932        | 12.0  | 19644 | 0.6932          | 0.4946   |


### Framework versions

- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.1