hBERTv1_new_pretrain_48_KD_stsb

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_48_KD on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9753
  • Pearson: 0.4441
  • Spearmanr: 0.4350
  • Combined Score: 0.4395

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.2736 1.0 45 2.5807 0.1213 0.1131 0.1172
1.9996 2.0 90 2.3578 0.1791 0.1901 0.1846
1.7489 3.0 135 2.1912 0.2981 0.2958 0.2970
1.4124 4.0 180 2.8188 0.2915 0.2901 0.2908
1.1148 5.0 225 2.3077 0.3345 0.3206 0.3276
0.8203 6.0 270 2.4569 0.3944 0.3852 0.3898
0.6562 7.0 315 2.1797 0.4086 0.4082 0.4084
0.5537 8.0 360 2.2254 0.4198 0.4180 0.4189
0.5236 9.0 405 2.2477 0.4231 0.4100 0.4166
0.3807 10.0 450 2.1156 0.4398 0.4346 0.4372
0.3645 11.0 495 1.9753 0.4441 0.4350 0.4395
0.2975 12.0 540 2.3133 0.4634 0.4537 0.4585
0.2781 13.0 585 2.3479 0.4473 0.4469 0.4471
0.2308 14.0 630 2.2469 0.4441 0.4376 0.4408
0.2555 15.0 675 2.0949 0.4840 0.4772 0.4806
0.2003 16.0 720 2.0903 0.4814 0.4742 0.4778

Framework versions

  • Transformers 4.30.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train gokuls/hBERTv1_new_pretrain_48_KD_stsb

Evaluation results