bert_uncased_L-2_H-768_A-12_massive

This model is a fine-tuned version of google/bert_uncased_L-2_H-768_A-12 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5434
  • Accuracy: 0.8746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.5143 1.0 180 1.2564 0.7024
1.0135 2.0 360 0.7279 0.8205
0.6173 3.0 540 0.5817 0.8559
0.433 4.0 720 0.5234 0.8598
0.312 5.0 900 0.5019 0.8657
0.23 6.0 1080 0.5028 0.8711
0.1742 7.0 1260 0.5037 0.8682
0.1314 8.0 1440 0.5018 0.8692
0.1031 9.0 1620 0.5188 0.8731
0.081 10.0 1800 0.5231 0.8711
0.0671 11.0 1980 0.5407 0.8716
0.0569 12.0 2160 0.5309 0.8721
0.0466 13.0 2340 0.5463 0.8711
0.0414 14.0 2520 0.5434 0.8746
0.039 15.0 2700 0.5464 0.8721

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for gokuls/bert_uncased_L-2_H-768_A-12_massive

Finetuned
(2)
this model

Evaluation results